Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T16:05:19.831Z Has data issue: false hasContentIssue false

On the mapping connecting the cylindrical nonlinear von Neumann equation with the standard von Neumann equation

Published online by Cambridge University Press:  25 January 2010

RENATO FEDELE
Affiliation:
Dipartimento di Scienze Fisiche, Università Federico II and INFN Sezione di Napoli, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy, EU (renato.fedele@na.infn.it)
SERGIO DE NICOLA
Affiliation:
Dipartimento di Scienze Fisiche, Università Federico II and INFN Sezione di Napoli, Complesso Universitario di M.S. Angelo, via Cintia, I-80126 Napoli, Italy, EU (renato.fedele@na.infn.it) Istituto di Cibernetica “Eduardo Caianiello” del CNR Comprensorio “A. Olivetti” Fabbr. 70, Via Campi Flegrei, 34, I-80078 Pozzuoli (NA), Italy, EU
DUSAN JOVANOVIĆ
Affiliation:
Institute of Physics, P. O. Box 57, 11001 Belgrade, Serbia
DAN GRECU
Affiliation:
Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering “Horia Hulubei”, Atomistilor 407, Bucharest-Magurele, RO-077125, Romania
ANCA VISINESCU
Affiliation:
Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering “Horia Hulubei”, Atomistilor 407, Bucharest-Magurele, RO-077125, Romania

Abstract

The Wigner transformation is used to define the quasidistribution (Wigner function) associated with the wave function of the cylindrical nonlinear Schrödinger equation (CNLSE) in a way similar to that of the standard nonlinear Schrödinger equation (NLSE). The phase-space equation, governing the evolution of such quasidistribution, is a sort of nonlinear von Neumann equation (NLvNE), called here the ‘cylindrical nonlinear von Neumann equation’ (CNLvNE). Furthermore, the phase-space transformations, connecting the Wigner function and the NLvNE with the ‘cylindrical Wigner function’ and the CNLvNE, are found by extending the configuration space transformations that connect the NLSE and the CNLSE. Some examples of phase-space soliton solutions are given analytically and evaluated numerically.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Dodd, R. K., Eilbeck, J. C., Gibbon, J. D. and Morris, H. C. 1982 Solitons and Nonlinear Wave Equations. London: Academic Press.Google Scholar
[2]Karpman, V. I. 1975 Nonlinear Waves in Dispersive Media. Oxford: Pergamon Press.Google Scholar
[3]Sulem, P. L. and Sulem, C. 1999 Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Berlin, Germany: Springer.Google Scholar
[4]Leclert, G. P., Kharney, Ch. F. F., Bers, A. and Kaup, D. J. 1979 Physics Fluids 22, 1545.CrossRefGoogle Scholar
[5]Xue, J. K. and Lang, H. 2003 Phys. Plasmas 10, 339.Google Scholar
[6]Xue, J. K. 2004 Phys. Lett. A 322, 225.CrossRefGoogle Scholar
[7]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Inst. of Physics.CrossRefGoogle Scholar
[8]Huang, G., Lou, S. and Dai, X. 1990 Chinese Phys. Lett. 7, 398.Google Scholar
[9]Fedele, R. 2002 Physica Scripta 65, 502; Fedele, R. and Schamel, H. 2002 Eur. Phys. J. B 27, 313.CrossRefGoogle Scholar
[10]Visinescu, A., Grecu, D., Grecu, A. T., Fedele, R. and De Nicola, S. 2009 Theor. Math. Phys. 160, 1059; Grecu, D., Grecu, A. T., Visinescu, A., Fedele, R. and De Nicola, S. 2008 J. Nonlinear Math. Phys. 15, Suppl. 3, 209.CrossRefGoogle Scholar
[11]Fedele, R., De Nicola, S., Grecu, D., Shukla, P. K. and Visinescu, A. 2008 Frontier in Modern Plasma Physics. In: AIP Conf. Proc., Vol. 1061 (eds. Shukla, P. K., Eliasson, B. and Stenflo, L.), p. 273.Google Scholar
[12]Fedele, R., De Nicola, S., Grecu, D., Visinescu, A. and Shukla, P. K. 2009 New Developments in Nonlinear Plasma Physics. In: AIP Conf. Proc., Vol. 1188 (eds. Shukla, P. K., Eliasson, B. and Stenflo, L.), p. 365.Google Scholar
[13]Wigner, E. 1932 Phys. Rev. 40, 749.CrossRefGoogle Scholar
[14]Calogero, F. and Degasperis, A. 1982 Spectral Trasform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations. Amsterdam: North-Holland.Google Scholar
[15]von Neumann, J. 1932 Mathematische Grundlagen der Quantenmechanik Berlin: Springer; 1963Collected Works. Pergamon: Oxford; Moyal, J. E. Proc. Cambidge Phil. Soc. 45, 99.Google Scholar