Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T15:19:52.895Z Has data issue: false hasContentIssue false

On the quasi-collisionality of plasmas with small-scale electric turbulence

Published online by Cambridge University Press:  18 April 2016

Brett D. Keenan*
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
Mikhail V. Medvedev
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
*
Email address for correspondence: bdkeenan@ku.edu

Abstract

Chaotic electromagnetic fields are common in many relativistic plasma environments, where they can be excited by instabilities on kinetic spatial scales. When strong electric fluctuations exist on sub-electron scales, they may lead to small angle, stochastic deflections of the electrons’ pitch angles. Under certain conditions, this closely resembles the effect of Coulomb collisions in collisional plasmas. The electric pitch-angle diffusion coefficient acts as an effective collision – or ‘quasi-collision’ – frequency. We show that quasi-collisions may radically alter the expected radiative transport properties of candidate plasmas. In particular, we consider the quasi-collisional generalization of the classical Faraday effect.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bekefi, George 1966 Radiation Processes in Plasmas. Wiley.Google Scholar
Bergman, J. & Eliasson, B. 2001 Linear wave dispersion laws in unmagnetized relativistic plasma: Analytical and numerical results. Phys. Plasmas 8, 1482.CrossRefGoogle Scholar
Dieckmann, M. E., Chapman, S. C., Mcclements, K. G., Dendy, R. O. & Drury, L. O. 2000 Electron acceleration due to high frequency instabilities at supernova remnant shocks. Astron. Astrophys. 356, 377.Google Scholar
Huntington, C. M., Fiuza, F., Ross, J. S., Zylstra, A. B., Drake, R. P., Froula, D. H., Gregori, G., Kugland, N. L., Kuranz, C. C., Levy, M. C. et al. 2015 Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nat. Phys. 11 (2), 173176.Google Scholar
Jackson, J. D. 1999 Classical Electrodynamics, 3rd edn. Wiley.Google Scholar
Kamble, A., Soderberg, A. M., Chomiuk, L., Margutti, R., Medvedev, M., Milisavljevic, D., Chakraborti, S., Chevalier, R., Chugai, N., Dittmann, J. et al. 2014 Radio observations reveal a smooth circumstellar environment around the extraordinary type Ib supernova 2012au. Astrophys. J. 797, 2.CrossRefGoogle Scholar
Keenan, B. D., Ford, A. L. & Medvedev, M. V. 2015a Transport of and radiation production by transrelativistic and nonrelativistic particles moving through sub-Larmor-scale electromagnetic turbulence. Phys. Rev. E 92, 033104.Google Scholar
Keenan, B. D., Ford, A. L. & Medvedev, M. V. 2015b Quasicollisional magneto-optic effects in collisionless plasmas with sub-Larmor-scale electromagnetic fluctuations. Phys. Rev. E 92, 053102.Google ScholarPubMed
Keenan, B. D. & Medvedev, M. V. 2013 Particle transport and radiation production in sub-Larmor-scale electromagnetic turbulence. Phys. Rev. E 88, 013103.Google ScholarPubMed
Keenan, B. D. & Medvedev, M. V. 2015 Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments. Phys. Plasmas 22, 113110.CrossRefGoogle Scholar
Keenan, B. D.2016 On the transport and radiative properties of plasmas with small-scale electromagnetic fluctuations. PhD thesis, University of Kansas. UMI: Proquest.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1975 The Classical Theory of Fields, Course of Theoretical Physics, vol. 2. Pergamon.Google Scholar
Luo, Q. & Chian, A. C.-L. 1997 Pulsar eclipsing mechanisms: the effect of photon-beam-induced acoustic turbulence. Mon. Not. R. Astron. Soc. 289, 52.Google Scholar
Medvedev, M. V. 2000 Theory of ‘Jitter’ radiation from small-scale random magnetic fields and prompt emission from gamma-ray burst shocks. Astrophys. J. 40, 704.CrossRefGoogle Scholar
Medvedev, M. V. 2006 The theory of spectral evolution of the gamma-ray burst prompt emission. Astrophys. J. 637, 869.Google Scholar
Medvedev, M. V., Frederiksen, J. T., Haugbølle, T. & Nordlund, Å 2011 Radiation signatures of sub-larmor scale magnetic fields. Astrophys. J. 737, 55.Google Scholar
Medvedev, M. V., Pothapragada, S. S. & Reynolds, S. J. 2009 Modeling spectral variability of prompt grb emission within the jitter radiation paradigm. Astrophys. J. Lett. 702, L91.Google Scholar
Park, H.-S., Huntington, C. M., Fiuza, F., Drake, R. P., Froula, D. H., Gregori, G., Koenig, M., Kugland, N. L., Kuranz, C. C., Lamb, D. Q. et al. 2015 Collisionless shock experiments with lasers and observation of Weibel instabilities. Phys. Plasmas 22, 056311.Google Scholar
Ren, C., Tzoufras, M., Tsung, F. S. et al. 2004 Global simulation for laser-driven MeV electrons in fast ignition. Phys. Rev. Lett. 93, 185004.CrossRefGoogle ScholarPubMed
Reville, B. & Kirk, J. G. 2010 Computation of synthetic spectra from simulations of relativistic shocks. Astrophys. J. 724, 1283.Google Scholar
Reynolds, S. J. & Medvedev, M. V. 2012 Radiative diagnostics for sub-Larmor scale magnetic turbulence. Phys. Plasmas 19, 023106.Google Scholar
Shcherbakov, R. V. 2008 Propagation effects in magnetized transrelativistic plasmas. Astrophys. J. 688, 695.CrossRefGoogle Scholar
Tatarakis, M., Beg, F. N., Clark, E. L. et al. 2003 Propagation instabilities of high-intensity laser-produced electron beams. Phys. Rev. Lett. 90, 175001.CrossRefGoogle ScholarPubMed
Teraki, Y. & Takahara, F. 2011 A novel emission spectrum from a relativistic electron moving in a random magnetic field. Astrophys. J. 735, L44.Google Scholar
Teraki, Y. & Takahara, F. 2014 General properties of the radiation spectra from relativistic electrons moving in a Langmuir turbulence. Astrophys. J. 787, 28.Google Scholar