Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T10:58:36.237Z Has data issue: false hasContentIssue false

Plasma acceleration by the interaction of parallel propagating Alfvén waves

Published online by Cambridge University Press:  05 September 2014

F. Mottez*
Affiliation:
Laboratoire Univers et Théories (LUTH), Observatoire de Paris; CNRS UMR8102, Université Paris Diderot; 5 Place Jules Janssen, 92190 Meudon, France
*
Email address for correspondence: fabrice.mottez@obspm.fr

Abstract

It is shown that two circularly polarized Alfvén waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic waves. The simulations are done with monochromatic waves and with wave packets. The simulations show parallel electromagnetic fields consistent with the theory, and they show that the particle acceleration results in plasma cavities and, if the waves amplitudes are high enough, in ion beams. These acceleration processes could be relevant in space plasmas. For instance, they could be at work in the auroral zone and in the radiation belts of the Earth magnetosphere. In particular, they may explain the origin of the deep plasma cavities observed in the Earth auroral zone.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araneda, J. A., Marsch, E. and F.-Viñas, A. 2008 Proton core heating and beam formation via parametrically unstable Alfvén-Cyclotron waves. Phys. Rev. Lett. 100 (12), 125003.CrossRefGoogle ScholarPubMed
Buti, B., Velli, M., Liewer, P. C., Goldstein, B. E. and Hada, T. 2000 Hybrid simulations of collapse of Alfvénic wave packets. Phys. Plasmas 7, 39984003.CrossRefGoogle Scholar
Chaston, C. C., Bonnell, J. W., Carlson, C. W., Berthomier, M., Peticolas, L. M., Roth, I., McFadden, J. P., Ergun, R. E. and Strangeway, R. J. 2002 Electron acceleration in the ionospheric Alfven resonator. J. Geophys. Res. 107 (11), 41–1.Google Scholar
Génot, V., Louarn, P. and Le Quéau, D. 1999 A study of the propagation of Alfvén waves in the auroral density cavities. J. Geophys. Res. 104 (13), 2264922656.CrossRefGoogle Scholar
Génot, V., Mottez, F. and Louarn, P. 2001 Particle acceleration linked to Alfven wave propagation on small scale density gradients. Phys. Chem. Earth 26, 219222.Google Scholar
Goertz, C. K. 1984 Kinetic Alfvén waves on auroral field lines. Planet. Space Sci. 32, 13871392.CrossRefGoogle Scholar
Hasegawa, A. and Mima, K. 1978 Anomalous transport produced by kinetic Alfven wave turbulence. J. Geophys. Res. 83 (12), 11171123.CrossRefGoogle Scholar
Hilgers, A. 1992 The auroral radiating plasma cavities. Geophys. Res. Lett. 19, 237240.CrossRefGoogle Scholar
Knudsen, D. J. 2001 Structure, acceleration, and energy in auroral arcs and the role of Alfvén waves. Space Sci. Rev. 95, 501511.CrossRefGoogle Scholar
Louarn, P., Wahlund, J. E., Chust, T., de Feraudy, H., Roux, A., Holback, B., Dovner, P. O., Eriksson, A. I. and Holmgren, G. 1994 Observation of kinetic Alfven waves by the Freja spacecraft. Geophys. Res. Lett. 21, 1847–+.CrossRefGoogle Scholar
Lund, E. J. 2010 On the dissipation scale of broadband ELF waves in the auroral region. J. Geophys. Res. 115, 1201.Google Scholar
Lysak, R. L. 1991 Feedback instability of the ionospheric resonant cavity. J. Geophys. Res. 96, 15531568.CrossRefGoogle Scholar
Lysak, R. L. and Song, Y. 2003 a Kinetic theory of the Alfvén wave acceleration of auroral electrons. J. Geophys. Res. 108 (4), 6–1.Google Scholar
Lysak, R. L. and Song, Y. 2003 b Nonlocal kinetic theory of Alfvén waves on dipolar field lines. J. Geophys. Res. 108, 1327–+.Google Scholar
Mäkelä, J. S., Mälkki, A., Koskinen, H., Boehm, M., Holback, B. and Eliasson, L. 1998 Observations of mesoscale auroral plasma cavity crossings with the Freja satellite. J. Geophys. Res. 103, 93919404.CrossRefGoogle Scholar
Matteini, L., Landi, S., Velli, M. and Hellinger, P. 2010 Kinetics of parametric instabilities of Alfvén waves: Evolution of ion distribution functions. J. Geophys. Res. 115, 9106.Google Scholar
Melrose, D. B. and Wheatland, M. S. 2013 Transfer of energy, potential, and current by Alfvén waves in solar flares. Sol. Phys. 288, 223240.CrossRefGoogle Scholar
Mottez, F. 2008 A guiding centre direct implicit scheme for magnetized plasma simulations. J. Comput. Phys. 227, 32603281.CrossRefGoogle Scholar
Mottez, F. 2012 a Non-propagating electric and density structures formed through non-linear interaction of Alfvén waves. Ann. Geophys. 30, 8195.CrossRefGoogle Scholar
Mottez, F. 2012 b The role Alfvén waves in the generation of Earth polar auroras. In: Proceedings of “Waves and Instabilities in Space and Astrophysical Plasmas” (WISAP) Eilat, Israel, June 19th – June 24th, 2011.Google Scholar
Mottez, F., Adam, J. C. and Heron, A. 1998 A new guiding centre PIC scheme for electromagnetic highly magnetized plasma simulation. Comput. Phys. Commun. 113, 109130.CrossRefGoogle Scholar
Mottez, F. and Génot, V. 2011 Electron acceleration by an Alfvénic pulse propagating in an auroral plasma cavity. J. Geophys. Res. 116, A00K15.Google Scholar
Persoon, A. M., Gurnett, D. A., Peterson, W. K., Waite, J. H. Jr., Burch, J. L. and Green, J. L. 1988 Electron density depletions in the nightside auroral zone. J. Geophys. Res. 93, 18711895.CrossRefGoogle Scholar
Sharma, R. P. and Singh, H. D. 2009 Density cavities associated with inertial Alfvén waves in the auroral plasma. J. Geophys. Res. 114, 3109.Google Scholar
Shukla, P. K. and Stenflo, L. 1999 Plasma density cavitation due to inertial Alfvén wave heating. Phys. Plasmas 6, 41204122.CrossRefGoogle Scholar
Singh, N. 1992 Plasma perturbations created by transverse ion heating events in the magnetosphere. J. Geophys. Res. 97, 42354249.CrossRefGoogle Scholar
Singh, N. 1994 Pondermotive versus mirror force in creation of the filamentary cavities in auroral plasma. Geophys. Res. Lett. 21, 257260.CrossRefGoogle Scholar
Stasiewicz, K. et al. 2000 Small scale Alfvénic structure in the Aurora. Space Sci. Rev. 92, 423533.CrossRefGoogle Scholar
Thompson, B. J. and Lysak, R. L. 1996 Electron acceleration by inertial Alfvén waves. J. Geophys. Res. 101, 53595370.CrossRefGoogle Scholar
Volwerk, M., Louarn, P., Chust, T., Roux, A., de Feraudy, H. and Holback, B. 1996 Solitary kinetic Alfvén waves: a study of the Poynting flux. J. Geophys. Res. 101 (10), 1333513344.CrossRefGoogle Scholar
Watt, C. E. J. and Rankin, R. 2008 Electron acceleration and parallel electric fields due to kinetic Alfvén waves in plasma with similar thermal and Alfvén speeds. Adv. Space Res. 42, 964969.CrossRefGoogle Scholar
Watt, C. E. J. and Rankin, R. 2010 Do magnetospheric shear Alfvén waves generate sufficient electron energy flux to power the aurora? J. Geophys. Res. 115 (14), 7224–+.Google Scholar
Yuan, C. and Zong, Q. 2013 The double-belt outer radiation belt during CME- and CIR-driven geomagnetic storms. J. Geophys. Res. 118, 62916301.CrossRefGoogle Scholar