Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T03:26:15.189Z Has data issue: false hasContentIssue false

Plasma heating and acceleration due to Landau damping of hydromagnetic waves

Published online by Cambridge University Press:  13 March 2009

Aaron Barnes
Affiliation:
Space Science Division, Ames Research Center, NASA, Moffett Field, California 94035
R. J. Hung
Affiliation:
Space Science Division, Ames Research Center, NASA, Moffett Field, California 94035

Abstract

We analyze energy and momentum exchange associated with Landau damping of hydromagnetic waves, from a macroscopic viewpoint, and compare the conclusions with those of the resonant quasiinear theory. It is found that the heating of protons and electrons is correctly given by the resonant theory, but that the momentum exchange is not correctly described by the resonant theory.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B. 1968 J. Geophys. Res. 73, 6299.CrossRefGoogle Scholar
Alazraki, G. & Couturier, P. 1971 Astron. Astrophys. 13, 380.Google Scholar
Barnes, A. 1966 Phys. Fluids, 9, 1483.Google Scholar
Barnes, A. 1967 Phys. Fluids, 10, 2427.Google Scholar
Barnes, A. 1968 a Astrophys. J. 154, 751.Google Scholar
Barnes, A. 1968 b Phys. Fluids, 11, 2644.CrossRefGoogle Scholar
Barnes, A. 1969 Astrophys. J. 155, 311.Google Scholar
Barnes, A., Hartle, R. E. & Bredekamp, J. H, 1971 Astrophys. J. 166, L53.Google Scholar
Barnes, A. & Suffolk, G. C. J. 1971 J. Plasma Phys. 5, 315.CrossRefGoogle Scholar
Belcher, J. W. 1971 Astrophys. J. 168, 509.CrossRefGoogle Scholar
Buneman, O. 1968 Relativistic Plasmas (ed. Buneman, O. and Pardo, W. B.), p. 41. Benjamin.Google Scholar
Chew, G. F., Goldberger, M. L. & Low, F. L. 1956 Proc. Roy. Soc. A 236, 112.Google Scholar
Davidson, R. C. & Völk, H. J. 1968 Phys. Fluids, 11, 2259.CrossRefGoogle Scholar
Dawson, J. 1961 Phys. Fluids, 4, 869.CrossRefGoogle Scholar
Dewar, R. L. 1970 Phys. Fluids, 13, 2710.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Hartle, R. E. & Barnes, A. 1970 J. Geophys. Res. 75, 6915.CrossRefGoogle Scholar
Hollweg, J. V. & Völk, H. J. 1971 J. Geophys. Res. 76, 7527.Google Scholar
Jones, W. L. 1971 Revs. Geophys. Space Phys. 9, 917.Google Scholar
Kennel, C. F. & Engelmann, F. 1966 Phys. Fluids, 9, 2377.Google Scholar
Macmahon, A. 1965 Phys. Fluids, 8, 1840.CrossRefGoogle Scholar
Pilipp, W. & Völk, H. J. 1971 J. Plasma Phys. 6, 1.CrossRefGoogle Scholar
Stepanov, K. N. 1958 Soviet Phys. JETP, 7, 892.Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Sturrock, P. A. 1958 Ann. Phys. 4, 306.Google Scholar
Sturrock, P. A. 1960 J. Appl. Phys. 31, 2052.Google Scholar
Tajiri, M. 1967 J. Phys. Soc. Japan, 22, 1482.CrossRefGoogle Scholar