Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T03:15:17.493Z Has data issue: false hasContentIssue false

The propagation of linear waves in high-energy-density magnetoplasmas using a relativistic quantum magnetohydrodynamic model

Published online by Cambridge University Press:  10 March 2021

Jun Zhu*
Affiliation:
School of Physics and Electronic Engineering, Shanxi University, Taiyuan030006, PR China
Xiaoshan Liu
Affiliation:
School of Physics and Electronic Engineering, Shanxi University, Taiyuan030006, PR China
Li Jia
Affiliation:
School of Physics and Electronic Engineering, Shanxi University, Taiyuan030006, PR China
*
Email address for correspondence: zhujun@sxu.edu.cn

Abstract

The propagation characteristics of linear waves in high-energy-density magnetoplasmas are investigated using a relativistic magnetohydrodynamic model based on the framework of relativistic quantum theory. Based on the covariant Wigner function approach, a relativistic quantum magnetohydrodynamic model is established. Starting from the relativistic quantum magnetohydrodynamic equations and the Maxwell equations, the dispersion equation for relativistic quantum magnetoplasmas is derived. The contributions of both quantum effects and relativistic effects are shown in the dispersion relations for perpendicular, parallel propagation with respect to a background magnetic field. Results show that the corrections of both quantum effects and relativistic effects are significant when choosing the plasma parameters of laser-based plasma compression schemes.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, S., Moslem, W. M., Shukla, P. K. & Schlickeiser, R. 2007 Linear and nonlinear ion-acoustic waves in an unmagnetized electron-positron-ion quantum plasma. Phys. Plasmas 14 (8), 082307.CrossRefGoogle Scholar
Amiranoff, F., Baton, S., Bernard, D., Cros, B., Descamps, D., Dorchies, F., Jacquet, F., Malka, V., Marquès, J. R., Matthieussent, G., et al. 1998 Observation of laser wakefield acceleration of electrons. Phys. Rev. Lett. 81 (5), 995998.CrossRefGoogle Scholar
Bingham, R., Mendonca, J. T. & Shukla, P. K. 2004 Plasma based charged-particle accelerators. Plasma Phys. Control. Fusion 46, R1R23.CrossRefGoogle Scholar
Brodin, G., Marklund, M. & Manfredi, G. 2008 Quantum plasma effects in the classical regime. Phys. Rev. Lett. 100 (17), 17500.CrossRefGoogle ScholarPubMed
Diaz Alonso, J. & Hakim, R. 1984 Quantum fluctuations of the relativistic scalar plasma in the Hartree–Vlasov approximation. Phys. Rev. D 29 (12), 26902700.CrossRefGoogle Scholar
Haas, H. 2011 Quantum Plasmas: An Hydrodynamic Approach. Springer.CrossRefGoogle Scholar
Hakim, R. & Heyvaerts, J. 1978 Covariant Wigner function approach for relativistic quantum plasmas. Phys. Rev. A 18 (3), 12501260.CrossRefGoogle Scholar
Hakim, R. & Sivak, H. 1982 Covariant Wigner function approach to the relativistic quantum electron gas in a strong magnetic field. Ann. Phys. 139, 230292.CrossRefGoogle Scholar
Jancovici, B. 1962 On the relativistic degenerate electron gas. Nuovo Cimento 25 (2), 428455.CrossRefGoogle Scholar
Jung, Y. D. 2001 Quantum-mechanical effects on electron–electron scattering in dense high-temperature plasmas. Phys. Plasmas 8 (8), 38423844.CrossRefGoogle Scholar
Kremp, D., Bornath, T., Bonitz, M. & Schlanges, M. 1999 Quantum kinetic theory of plasmas in strong laser fields. Phys. Rev. E 60 (4), 47254732.CrossRefGoogle ScholarPubMed
Lindhard, J. 1954 On the properties of a gas of charged particles. K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28 (8), 157.Google Scholar
Manfredi, G. & Haas, H. 2001 Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64 (7), 075316.CrossRefGoogle Scholar
Marklund, M. & Brodin, G. 2007 Dynamics of spin-1/2 quantum plasmas. Phys. Rev. Lett. 98 (2), 025001.CrossRefGoogle ScholarPubMed
Marklund, M. & Shukla, P. K. 2006 Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78 (2), 591640.CrossRefGoogle Scholar
Markowich, P. A., Ringhofer, C. & Schmeiser, C. 1990 Semiconductor Equations. Springer.CrossRefGoogle Scholar
Melrose, D. B. 2008 Quantum Plasmadynamics: Unmagnetized Plasmas. Lecture Notes in Physics. Springer.CrossRefGoogle Scholar
Melrose, D. B., Weise, J. I. & McOrist, J. 2006 Relativistic quantum plasma dispersion functions. J. Phys. A 39, 87278740.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Malka, V., Darrow, C. B., Danson, C., Neely, D., et al. 1995 Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606608.CrossRefGoogle Scholar
Opher, M., Silva, L. O., Dauger, D. E., Decyk, V. K. & Dawson, J. M. 2001 Nuclear reaction rates and energy in stellar plasmas: the effect of highly damped modes. Phys. Plasmas 8 (5), 24542460.CrossRefGoogle Scholar
Schroeder, C. B., Whittum, D. H. & Wurtele, J. S. 1999 Multimode analysis of the hollow plasma channel wakefield accelerator. Phys. Rev. Lett. 82 (6), 11771180.CrossRefGoogle Scholar
Shukla, P. K. & Eliasson, B. 2011 Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83 (3), 885906.CrossRefGoogle Scholar
Tajima, T. & Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43 (4), 267270.CrossRefGoogle Scholar
Tamburini, M., Pegoraro, F., Piazza, A. D., Keitel, C. H. & Macchi, A. 2010 Radiation reaction effects on radiation pressure acceleration. New J. Phys. 12, 123005.CrossRefGoogle Scholar
Tenreiro, R. D. & Hakim, R. 1977 Transport properties of the relativistic degenerate electron gas in a strong magnetic field: Covariant relaxation-time model. Phys. Rev. D 15 (6), 14351447.CrossRefGoogle Scholar
Tsytovich, V. N. 1961 Spatial dispersion in a relativistic plasma. Sov. Phys. JETP 13 (6), 12491256.Google Scholar
Zhu, J. & Ji, P. 2010 Relativistic quantum corrections to laser wakefield acceleration. Phys. Rev. E 81 (3), 036406.CrossRefGoogle ScholarPubMed
Zhu, J. & Ji, P. 2012 Dispersion relation and Landau damping of waves in high-energy density plasmas. Plasma Phys. Control. Fusion 54, 065004.CrossRefGoogle Scholar