Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T03:46:28.024Z Has data issue: false hasContentIssue false

Proton acceleration in three-dimensional non-null magnetic reconnection

Published online by Cambridge University Press:  19 October 2016

Z. Akbari
Affiliation:
Plasma Physics Department, Faculty of Physics, University of Tabriz, Tabriz, Iran
M. Hosseinpour*
Affiliation:
Plasma Physics Department, Faculty of Physics, University of Tabriz, Tabriz, Iran
M. A. Mohammadi
Affiliation:
Plasma Physics Department, Faculty of Physics, University of Tabriz, Tabriz, Iran
*
Email address for correspondence: hosseinpour@tabrizu.ac.ir

Abstract

In a three-dimensional non-null magnetic reconnection, the process of magnetic reconnection takes place in the absence of a null point where the magnetic field vanishes. By randomly injecting a population of 10 000 protons, the trajectory and energy distribution of accelerated protons are investigated in the presence of magnetic and electric fields of a particular model of non-null magnetic reconnection with the typical parameters for the solar corona. The results show that protons are accelerated along the magnetic field lines away from the non-null point only at azimuthal angles where the magnitude of the electric field is strongest and therefore particles obtain kinetic energies of the order of thousands of MeV and even higher. Moreover, the energy distribution of the population depends strongly on the amplitude of the electric and magnetic fields. Comparison shows that a non-null magnetic reconnection is more efficient in accelerating protons to very high GeV energies than a null-point reconnection.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschwanden, M. 2012 GeV particles acceleration in the solar flares and ground level enhancement (GLE) events. Space Sci. Rev. 171, 321.CrossRefGoogle Scholar
Benz, A. O., Grigis, P. C. & Battaglia, M. 2006 Particle acceleration in solar flares: observations versus numerical simulations. Plasma Phys. Control. Fusion 48, B115.CrossRefGoogle Scholar
Falcone, A. et al. 2003 Observation of GeV solar energetic particles from the 1997 November 6 event using MILAGRITO et al . Astrophys. J. 588, 557.CrossRefGoogle Scholar
Goldstein, M. L., Matthaeus, W. H. & Ambrosiano, J. 1986 Acceleration of charged particles in magnetic reconnection: solar flares, the magnetosphere, and solar wind. J. Geophys. Res. Lett. 13, 205.CrossRefGoogle Scholar
Hornig, G. & Priest, E. R. 2003 Evolution of magnetic flux in an isolated reconnection process. Phys. Plasmas 10, 2712.CrossRefGoogle Scholar
Hosseinpour, M. 2014a Test particle acceleration in torsional spine magnetic reconnection. Astrophys. Space Sci. 353, 379.CrossRefGoogle Scholar
Hosseinpour, M. 2014b Test particle acceleration in torsional fan reconnection. Mon. Not. R. Astron. Soc. 445, 2476.CrossRefGoogle Scholar
Hosseinpour, M. 2015 Accelerated jets of energetic protons generated by torsional fan reconnection. Astrophys. Space Sci. 358, 40.CrossRefGoogle Scholar
Knizhnik, K., Swisdak, M. & Drake, J. F. 2011 The acceleration of ions in solar flares during magnetic reconnection. Astrophys. J. Lett. 743, L35.CrossRefGoogle Scholar
Kocharov, L. et al. 2015 Comparative morphology of solar relativistic particle events. Astrophys. J. Lett. 811, L9.CrossRefGoogle Scholar
Krucker, S. et al. 2010 Measurements of the coronal acceleration region of a solar flare. Astrophys. J. Lett. 714, 1108.CrossRefGoogle Scholar
Lin, R. P. et al. 2003 RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. Lett. 595, L69.CrossRefGoogle Scholar
Lin, R. P. 2011 Energy release and particle acceleration in flares: summary and future prospects. Space Sci. Rev. 159, 421.CrossRefGoogle Scholar
Pontin, D. I. 2011 Three-dimensional magnetic reconnection regimes: a review. Adv. Space Res. 47, 1508.CrossRefGoogle Scholar
Pontin, D. I., Al-Hachami, A. K. & Galsgaard, K. 2011 Generalised models for torsional spine and fan magnetic reconnection. Astron. Astrophys. 533, A78.Google Scholar
Priest, E. & Forbes, T. 2009 Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press.Google Scholar
Priest, E. R. & Pontin, D. I. 2009 3D null point reconnection regimes. Phys. Plasmas 16, 122101.CrossRefGoogle Scholar
Shampine, L. & Gordon, M 1975 Computer Solution of Ordinary Differential Equations: The Initial Value Problem. Freeman.Google Scholar
Wilmot-Smith, A., Hornig, G. & Priest, E. R. 2006 Dynamic non-null magnetic reconnection in three-dimensions – I. Particular Solutions. Proc. R. Soc. Lond. A 462, 2877.Google Scholar
Yamada, M., Kulsrud, R. & Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82, 1.CrossRefGoogle Scholar
Zharkova, V. V., Arzner, K., Benz, A. O., Browning, P., Dauphin, C., Emslie, A. G., Fletcher, L., Kontar, E. P., Mann, G., Onofri, M. et al. 2011 Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357.CrossRefGoogle Scholar