Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T11:18:12.779Z Has data issue: false hasContentIssue false

Quasi-particles in magnetized plasmas: second-order approximation

Published online by Cambridge University Press:  13 March 2009

Petro P. Sosenko†
Affiliation:
Institute for Electromagnetic Field Theory and Plasma Physics, Chalmers University of Technology, Göteborg, Sweden

Abstract

A second-order approximation is formulated and studied within the context of the quasi-particle description of magnetized plasmas. The general case of relativistic particles in non-uniform but stationary magnetic fields, and in additional force fields that are strongly non-uniform but slowly evolving in time compared with particle gyrations with the cyclotron frequency, is considered. In order to reveal the physical significance of the second-order approximation, the mean (reduced) particle velocity is calculated up to second order, when polarization particle drift as well as the renormalization of the lower-order result become equally significant. A general expression for the velocity of particle polarization drift is obtained in terms of quasi-particle properties, and with account taken of finite-Larmor-radius effects and non-uniformity of magnetic fields. A guiding-centre transformation is found that makes it possible to achieve equal mean velocities of particle, guiding centre and quasi-particle up to second order. Then polarization drifts enter the particle, guiding-centre and quasi-particle equations of motion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. 1988 Transport Processes in Plasmas. 1: Classical Transport Theory. Elsevier.Google Scholar
Chen, F. F. 1984 Introduction to Plasma Physics and Controlled Fusion, 2nd edn, vol. 1: Plasma Physics. Plenum.Google Scholar
Dawson, J. M., Decyk, V., Sydora, R. & Liewer, P. 1993 Phys. Today 46, 64.CrossRefGoogle Scholar
D'Ippolito, D. A. & Davidson, R. C. 1975 Phys. Fluids 18, 1507.Google Scholar
Dubin, D. H. E., Krommes, J. A., Oberman, C. & Lee, W. W. 1983 Phys. Fluids 26, 3524.CrossRefGoogle Scholar
Kryloff, N. & Bogoliuboff, N. 1934 a Sur Quelques Dévelopements Formeles en Séries dans la Mécanique Non Linéaire. Académie des Sciences D'Ukraine, Kiev.Google Scholar
Kryloff, N. & Bogoliuboff, N. 1934 b Problèmes Fondamenteaux de la Mécanique Non Linéaire. Académie des Sciences D'Ukraine, Kiev.Google Scholar
Sitenko, A. G. & Sosenko, P. P. 1984 Proceedings of 1984 International Conference on Plasma Physics, Lausanne: Invited Papers (ed. Tran, M. Q. & Verbeek, R. J.), vol. 2, p. 921. Centre de Recherches en Physique des Plasmas, École Polytechnique Fédérale de Lausanne.Google Scholar
Sitenko, A. G. & Sosenko, P. P. 1987 Proceedings 1987 International Conference on Plasma Physics, Kiev: Invited Papers (ed. Sitenko, A. G.), vol. 1, p. 486. World Scientific.Google Scholar
Sitenko, A. G. & Sosenko, P. P. 1991 Physica Scripta 43, 609.Google Scholar
Sosenko, P. P. 1992 Phys. Fluids B 4, 3586.Google Scholar
Sosenko, P. P. 1994 Physica Scripta 50, 82.Google Scholar
Sosenko, P. P. & Decyk, V. K. 1993 Physica Scripta 47, 258.Google Scholar
Sosenko, P. P. & Decyk, V. K. 1994 a Physica Scripta 49, 619.Google Scholar
Sosenko, P. P. & Decyk, V. K. 1994 b Physica Scripta 50, 293.Google Scholar
Sosenko, P. P. & Grésillon, D. 1993 Proceedings of the 20th EPS Conference on Controlled Fusion and Plasma Physics, 26–30 July. 1993, Lisbon. Contributed Papers. Part III.Google Scholar
Weiland, J. 1984 Phys. Scripta 29, 234.Google Scholar