Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T05:09:52.338Z Has data issue: false hasContentIssue false

Radio-frequency sheath excitation at the extremities of scrape-off layer plasma filaments, mediated by resonant high harmonic fast wave scattering

Published online by Cambridge University Press:  16 December 2022

Laurent Colas*
Affiliation:
CEA, IRFM, F-13108 Saint Paul-Lez-Durance, France
W. Tierens
Affiliation:
Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching, Germany
J.R. Myra
Affiliation:
Lodestar Research Corporation, 5055 Chaparral Ct., Boulder, CO 80301, USA
R. Bilato
Affiliation:
Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching, Germany
*
 Email address for correspondence: laurent.colas@cea.fr

Abstract

Resonant filament-assisted mode conversion (FAMC) scattering of high harmonic fast waves (HHFW) by cylindrical field-aligned density inhomogeneities can efficiently redirect a fraction of the launched HHFW power flux into the parallel direction. Within a simplified analytic approach, this contribution compares the parallel propagation, reflection and dissipation of nearly resonant FAMC modes for three magnetic field line geometries in the scrape-off layer, in the presence of radio-frequency (RF) sheaths at field line extremities and phenomenological wave damping in the plasma volume. When a FAMC mode, excited at the HHFW antenna parallel location and guided along the open magnetic field lines, impinges onto a boundary at normal incidence, we show that it can excite sheath RF oscillations, even toroidally far away from the HHFW launcher. The RF sheaths then dissipate part of the power flux carried by the incident mode, while another part reflects into the FAMC mode with the opposite wave vector parallel to the magnetic field. The reflected FAMC mode in turn propagates and can possibly interact with the sheath at the opposite field line boundary. The two counter-propagating modes then form in the bounded magnetic flux tube a lossy cavity excited by the HHFW scattering. We investigate how the presence of field line boundaries affects the total HHFW power redirected into the filament, and its splitting between sheath and volume losses, as a function of relevant parameters in the model.

Type
Research Article
Copyright
Copyright © CEA, 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biswas, B., Shiraiwa, S., Baek, S.-G., Bonoli, P., Ram, A.K. & White, A.E. 2021 A hybrid full-wave Markov chain approach to calculating radio frequency wave scattering from scrape-off layer filaments. J. Plasma Phys. 87, 905870510.CrossRefGoogle Scholar
Decamps, P., Koch, R., Van Nieuwenhove, R., Van Oost, G., Van Wassenhove, G., Delvigne, T., Messiaen, A.M., Vandenplas, P.E. & Weinants, R.R. 1991 Excitation of global modes in TEXTOR and comparison with theory. Plasma Phys. Control. Fusion 33 (10), 1109-1133.CrossRefGoogle Scholar
Fuchs, V., Ram, A.K., Schultz, S.D., Bers, A. & Lashmore-Davis, C.N. 1995 Mode conversion and electron damping of the fast Alfvén wave in a tokamak at the ion–ion hybrid frequency. Phys. Plasmas 2, 1637.CrossRefGoogle Scholar
Garcia-Vidal, F.J., Fernandez-Domingez, A.I., Martin-Moreno, L., Zhang, H.C., Tang, W., Peng, R. & Cui, T.J. 2022 Spoof surface plasmon photonics. Rev. Mod. Phys. 94, 025004.CrossRefGoogle Scholar
Girka, I. & Thumm, M. 2022 Surface Flute Waves in Plasmas: Eigenwaves, Excitation, and Applications, 2nd edn, Springer Series on Atomic, Optical, and Plasma Physics. Springer Nature.CrossRefGoogle Scholar
Kazakov, Y.O., Pavlenko, I.V., Van Eester, D., Weyssow, B. & Girka, I.O. 2010 Enhanced ICRF (ion cyclotron range of frequencies) mode conversion efficiency in plasmas with two mode conversion layers. Plasma Phys. Control. Fusion 52, 115006 (20pp).CrossRefGoogle Scholar
Lau, C., Martin, E., Bertelli, N., Shiraiwa, S., Tierens, W., Brookman, M., Pinsker, R., Van Compernolle, B., Ram, A.K., Wallace, G., Dimits, A., Myra, J. R., Vincena, S. & Yang, X. 2020 Importance of resonant wave-filament interactions for HHFW, helicon and LH current drive in tokamaks. In APS Division of Plasma Physics Meeting Abstracts, vol. 2020, p. C19-026. Bibcode: 2020APS..DPPC19026L.Google Scholar
Myra, J.R. 2017 Physics-based parametrization of the surface impedance for radio frequency sheaths. Phys. Plasmas 24, 072507.CrossRefGoogle Scholar
Myra, J.R. & D'Ippolito, D.A. 2010 Scattering of radio frequency waves by blob- filaments. Phys. Plasmas 17, 102510.CrossRefGoogle Scholar
Myra, J.R., Elias, M.T., Curreli, D. & Jenkins, T.J. 2021 Effect of net direct current on the properties of radio frequency sheaths: simulation and cross-code comparison. Nucl. Fusion 61, 016030 (14pp).CrossRefGoogle Scholar
Myra, J.R. & Kohno, H. 2019 Radio frequency wave interactions with a plasma sheath: the role of wave and plasma sheath impedances. Phys. Plasmas 26, 052503.CrossRefGoogle Scholar
Perkins, R.J., Hosea, J.C., Jaworski, M.A., Ahn, J.-W., Diallo, A., Bell, R.E., Bertelli, N., Gerhardt, S., Gray, T.K., Krammer, G.J., LeBlanc, B.P., McLean, A., Phillips, C.K., Podesta, M., Roquemore, L., Saggagh, S., Taylor, G. & Wilson, J.R. 2015 The contribution of radio-frequency rectification to field-alignedlosses of high-harmonic fast wave power to the divertor in the national spherical torus experiment. Phys. Plasmas 22 (4), 042506.Google Scholar
Perkins, R.J., Hosea, J.C., Jaworski, M.A., Bell, R.E., Bertelli, N., Kramer, G.J., Roquemore, L., Taylor, G. & Wilson, J.R. 2017 The role of rectified currents in far-field rf sheaths and in SOL losses of HHFW power on NSTX. Nucl. Mater. Energy 12, 283-288.CrossRefGoogle Scholar
Raether, H. 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer.CrossRefGoogle Scholar
Ram, A.K. & Hizanidis, K. 2016 Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas. Phys. Plasmas 23, 022504.CrossRefGoogle Scholar
Renk, K.F. 2017 Chapter 3 Fabry-Perot resonator. In Basics of Laser Physics. Springer.CrossRefGoogle Scholar
Scotti, F., Zweben, S., Myra, J.R., Maqueda, A. & Soukhavovski, V. 2020 Disconnection of scrape off layer turbulence between the outer midplane and divertor target plate in NSTX. Nucl. Fusion 60, 026004.CrossRefGoogle Scholar
Stix, T.H. 1992 Waves in Plasmas. Springer Science & Business Media. ISBN 0883188597,9780883188590.Google Scholar
Tierens, W., Bilato, R., Bertelli, N., Shiraiwa, S., Myra, J.R. & Colas, L. 2022 a On the origin of High Harmonic Fast Wave edge losses in NSTX. Nucl. Fusion 62, 096011.CrossRefGoogle Scholar
Tierens, W., Myra, J.R., Bilato, R. & Colas, L. 2022 b Resonant wave–filament interactions as a loss mechanism for HHFW heating and current drive. Plasma Phys. Control. Fusion 64, 035001 (11pp).CrossRefGoogle Scholar
Tierens, W., Zhang, W., Manz, P., EUROfusion MST1 Team & ASDEX Upgrade Team 2020 b The importance of realistic plasma filament waveforms for the study of resonant wave filament interactions in tokamak edge plasmas. Phys. Plasmas 27, 052102.CrossRefGoogle Scholar
Tierens, W., Zhang, W., Myra, J.R. & EUROfusion MST1 Team 2020 a Filament- assisted mode conversion in magnetized plasmas. Phys. Plasmas 27, 010702.CrossRefGoogle Scholar
Zhang, W., Tierens, W., Bobkov, V., Cathey, A., Cziegler, I., Griener, M., Hoelzl, M., Cardaun, O., the ASDEX Upgrade Team & the EUROfusion MST1 Team 2021 Interaction between filaments and ICRF in the plasma edge. Nucl. Mater. Energy 26, 100941.CrossRefGoogle Scholar
Zweben, S.J., Myra, J.R., Davis, W.M., D'Ippolito, D.A., Gray, T.K., Kaye, S.M., LeBlanc, B.P., Maqueda, R.J., Russel, D.A., Stotler, S.J. & the NSTX-U Team 2016 Blob structure and motion in the edge and SOL of NSTX. Plasma Phys. Control. Fusion 58, 044007 (18pp).CrossRefGoogle Scholar