Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T04:26:15.407Z Has data issue: false hasContentIssue false

Random forcing with a constant power input for two-dimensional gyrokinetic simulations

Published online by Cambridge University Press:  24 March 2021

Ryusuke Numata*
Affiliation:
Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo650-0047, Japan
*
Email address for correspondence: ryusuke.numata@gmail.com

Abstract

A method of random forcing with a constant power input for two-dimensional gyrokinetic turbulence simulations is developed for the study of stationary plasma turbulence. The property that the forcing term injects the energy at a constant rate enables turbulence to be set up in the desired range and energy dissipation channels to be assessed quantitatively in a statistically steady state. Using the developed method, turbulence is demonstrated in the large-scale fluid and small-scale kinetic regimes, where the theoretically predicted scaling laws are reproduced successfully.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, I.G., Barnes, M., Cowley, S.C., Dorland, W. & Schekochihin, A.A. 2008 Linearized model Fokker–Planck collision operators for gyrokinetic simulations I. Theory. Phys. Plasmas 15 (12), 122509.CrossRefGoogle Scholar
Alvelius, K. 1999 Random forcing of three-dimensional homogenous turbulence. Phys. Fluids 11 (7), 18801889.CrossRefGoogle Scholar
Barnes, M., Abel, I.G., Dorland, W., Ernst, D.R., Hammett, G.W., Ricci, P., Rogers, B.N., Schekochihin, A.A. & Tatsuno, T. 2009 Linearized model Fokker–Planck collision operators for gyrokinetic simulations II. Numerical implementation and tests. Phys. Plasmas 16 (7), 072107.CrossRefGoogle Scholar
Biskamp, D. 2000 Magnetic Reconnection in Plasmas. Cambridge Monographs on Plasma Physics, vol. 3. Cambridge University Press.CrossRefGoogle Scholar
Biskamp, D. 2003 Magnetohydrodynamic Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Carnevale, G.F. 2006 Two-dimensional turbulence: an overview. In Mathematical and Physical Theory of Turbulence (ed. Cannon, J. & Shivamoggi, B.), chap. 3, pp. 4768. Chapman and Hall/CRC.Google Scholar
Charney, J.G. 1971 Geostrophic turbulence. J. Atmos. Sci. 27 (6), 10871095.2.0.CO;2>CrossRefGoogle Scholar
Chen, C.H. K. 2016 Recent progress in astrophysical plasma turbulence from solar wind observations. J. Plasma Phys. 82 (6), 535820602.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Grošelj, D., Cerri, S.S., Navarro, A.B., Willmott, C., Told, D., Loureiro, N.F., Califano, F. & Jenko, F. 2017 Fully kinetic versus reduced-kinetic modeling of collisionless plasma turbulence. Astrophys. J. 847 (1), 28.CrossRefGoogle Scholar
Hasegawa, A. & Mima, K. 1977 Stationary spectrum of strong turbulence in magnetized nonuniform plasma. Phys. Rev. Lett. 39 (4), 205208.CrossRefGoogle Scholar
Howes, G.G., TenBarge, J.M., Dorland, W., Quataert, E., Schekochihin, A.A., Numata, R. & Tatsuno, T. 2011 Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107 (3), 035004.CrossRefGoogle ScholarPubMed
Kawazura, Y., Barnes, M. & Schekochihin, A.A. 2019 Thermal disequilibration of ions and electrons by collisionless plasma turbulence. Proc. Natl. Acad. Sci. USA 116 (3), 771776.CrossRefGoogle ScholarPubMed
Kawazura, Y., Schekochihin, A.A., Barnes, M., TenBarge, J.M., Tong, Y., Klein, K.G. & Dorland, W. 2020 Ion versus electron heating in compressively driven astrophysical gyrokinetic turbulence. Phys. Rev. X 10 (4), 041050.Google Scholar
Loureiro, N.F., Schekochihin, A.A. & Zocco, A. 2013 Fast collisionless reconnection and electron heating in strongly magnetised plasmas. Phys. Rev. Lett. 111 (2), 025002.CrossRefGoogle Scholar
Marsch, E. & Tu, C.-Y. 1990 Spectral and spatial evolution of compressible turbulence in the inner solar wind. J. Geophys. Res. 95 (A8), 1194511956.CrossRefGoogle Scholar
Meyrand, R., Kanekar, A., Dorland, W. & Schekochihin, A.A. 2019 Fluidization of collisionless plasma turbulence. Proc. Natl. Acad. Sci. USA 116 (4), 11851194.CrossRefGoogle ScholarPubMed
Numata, R., Howes, G.G., Tatsuno, T., Barnes, M. & Dorland, W. 2010 AstroGK: astrophysical gryokinetics code. J. Comput. Phys. 229 (24), 93479372.CrossRefGoogle Scholar
Numata, R. & Loureiro, N.F. 2014 Electron and ion heating during magnetic reconnection in weakly collisional plasmas. JPS Conf. Proc. 1, 015044, proceedings of the 12th Asia Pacific Physics Conference of AAPPS, July 14–19, 2013, Chiba, Japan.Google Scholar
Numata, R. & Loureiro, N.F. 2015 Ion and electron heating during magnetic reconnection in weakly collisional plasmas. J. Plasma Phys. 81 (2), 305810201.CrossRefGoogle Scholar
Plunk, G.G., Cowley, S.C., Schekochihin, A.A. & Tatsuno, T. 2010 Two-dimensional gyrokinetic turbulence. J. Fluid Mech. 664, 407435.CrossRefGoogle Scholar
Retinò, A., Sundkvist, D., Vaivads, A., Mozer, F., André, M. & Owen, C.J. 2007 In situ evidence of magnetic reconnection in turbulent plasma. Nat. Phys. 3 (4), 235238.CrossRefGoogle Scholar
Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182 (1), 310377.CrossRefGoogle Scholar
Schekochihin, A.A., Parker, J.T., Highcock, E.G., Dellar, P.J., Dorland, W. & Hammett, G.W. 2016 Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. J. Plasma Phys. 82 (2), 905820212.CrossRefGoogle Scholar
Tatsuno, T., Barnes, M., Cowley, S.C., Dorland, W., Howes, G.G., Numata, R., Plunk, G.G. & Schekochihin, A.A. 2010 Gyrokinetic simulation of entropy cascade in two-dimensional electrostatic turbulence. J. Plasma Fusion Res. 9, 509516, proceedings of the 7th General Scientific Assembly of the Asia Plasma and Fusion Association in 2009 (APFA2009) and Asia-Pacific Plasma Theory Conference in 2009 (APPTC2009), October 27–30, 2009, Aomori, Japan.Google Scholar
Tatsuno, T., Dorland, W., Schekochihin, A.A., Plunk, G.G., Barnes, M., Cowley, S.C. & Howes, G.G. 2009 Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence. Phys. Rev. Lett. 103 (1), 015003.CrossRefGoogle ScholarPubMed
Tatsuno, T., Plunk, G.G., Barnes, M., Dorland, W., Howes, G.G. & Numata, R. 2012 Freely decaying turbulence in two-dimensional electrostatic gyrokinetics. Phys. Plasmas 19 (12), 122305.Google Scholar
TenBarge, J.M., Howes, G.G., Dorland, W. & Hammett, G.W. 2014 An oscillating Langevin antenna for driving plasma turbulence simulations. Comput. Phys. Commun. 185 (2), 578589.CrossRefGoogle Scholar
Told, D., Jenko, F., TenBarge, J.M., Howes, G.G. & Hammett, G.W. 2015 Multiscale nature of the dissipation range in gryokinetic simulations of Alfvénic turbulence. Phys. Rev. Lett. 115 (2), 025003.CrossRefGoogle ScholarPubMed