Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T03:44:39.388Z Has data issue: false hasContentIssue false

Relativistic collisionless shocks formation in pair plasmas

Published online by Cambridge University Press:  03 April 2013

ANTOINE BRET
Affiliation:
ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain (antoineclaude.bret@uclm.es)
A. STOCKEM
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Lisboa, Portugal
F. FIUZA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Lisboa, Portugal
C. RUYER
Affiliation:
CEA, DAM, DIF F-91297 Arpajon, France
L. GREMILLET
Affiliation:
CEA, DAM, DIF F-91297 Arpajon, France
R. NARAYAN
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, MA 02138, USA
L. O. SILVA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Lisboa, Portugal

Abstract

Collisionless shocks are ubiquitous in astrophysics and in the laboratory. Recent numerical simulations and experiments have shown how these can arise from the encounter of two collisionless plasma shells. When the shells interpenetrate, the overlapping region turns unstable, triggering the shock formation. As a first step toward a microscopic understanding of the process, we here analyze in detail the initial instability phase. On the one hand, 2D relativistic PIC simulations are performed where two unmagnetized, symmetric, and initially cold pair plasmas collide. On the other hand, the instabilities at work are analyzed, as well as the field at saturation and the seed field which gets amplified. For mildly relativistic motions and onward, Weibel modes with ω=0+iδ govern the linear phase. We derive an expression for the duration of the linear phase in reasonable agreement with the simulations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Begelman, M. C., Blandford, R. D. and Rees, M. J. 1984 Rev. Mod. Phys. 56, 255.CrossRefGoogle Scholar
Bell, A. R. 1978 Mon. Not. R. Astron. Soc. 182, 147.CrossRefGoogle Scholar
Blandford, R. and Ostriker, J. 1978 Astrophys. J. 221, L29.CrossRefGoogle Scholar
Bludman, S. A., Watson, K. M. and Rosenbluth, M. N. 1960 Phys. Fluids 3, 747.CrossRefGoogle Scholar
Bret, A. and Deutsch, C. 2005 Phys. Plasmas 12, 082704.CrossRefGoogle Scholar
Bret, A., Firpo, M.-C. and Deutsch, C. 2004 Phys. Rev. E 70, 046401.Google Scholar
Bret, A., Gremillet, L. and Dieckmann, M. E. 2010 Phys. Plasmas 17, 120501.CrossRefGoogle Scholar
Bret, A., Stockem, A., Fiuza, F., Ruyer, C., Gremillet, L., Narayan, R. and Silva, L.Phys. Plasmas, In Press, arXiv:1303.4095.Google Scholar
Dieckmann, M. E., Chapman, S. C., McClements, K. G., Dendy, R. O. and Drury, L. O. 2000 Astron. Astrophys. 356, 377.Google Scholar
Dieckmann, M. E., Ynnerman, A., Chapman, S. C., Rowlands, G. and Andersson, N. 2004 Physica Scripta 69, 456.CrossRefGoogle Scholar
Faĭnberg, Y. B., Shapiro, V. D. and Shevchenko, V. 1970 Soviet Phys. JETP 30, 528.Google Scholar
Fonseca, R., Silva, L., Tsung, F., Decyk, V., Lu, W., Ren, C., Mori, W., Deng, S., Lee, S., Katsouleas, T.et al. 2002 Lect. Notes Comput. Sci. 2331, 342.CrossRefGoogle Scholar
Haberberger, D., Tochitsky, S., Fiuza, F., Gong, C., Fonseca, R. A., Silva, L. O., Mori, W. B. and Joshi, C. 2012 Nature Phys. 8, 95.CrossRefGoogle Scholar
Harris, D. and Krawczynski, H. 2006 Annu. Rev. Astron. Astrophys. 44, 463.CrossRefGoogle Scholar
Joseph, J. A., Thomas, J. E., Kulkarni, M. and Abanov, A. G. 2011 Phys. Rev. Lett. 106, 150401.CrossRefGoogle Scholar
Koyama, K., Petre, R., Gotthelf, E. V., Hwang, U., Matsuura, M., Ozaki, M. and Holt, S. S. 1995 Nature 378, 255.CrossRefGoogle Scholar
Medvedev, M. V. and Loeb, A. 1999 Astrophys. J. 526, 697.CrossRefGoogle Scholar
Nakar, E. 2007 Phys. Rep. 442, 166.CrossRefGoogle Scholar
Nishikawa, K.-I., Hardee, P., Richardson, G., Preece, R., Sol, H. and Fishman, G. J. 2005 Astrophys. J. 622, 927.CrossRefGoogle Scholar
Ruyer, C. and Gremillet, L. (in preparation).Google Scholar
Schlickeiser, R. and Yoon, P. H. 2012 Phys. Plasmas 19, 022105.CrossRefGoogle Scholar
Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori, W. B. and Medvedev, M. V. 2003 Astrophys. J. 596, L121.CrossRefGoogle Scholar
Sitenko, A. G. 1967 Electromagnetic Fluctuations in Plasma. New York: Academic Press.CrossRefGoogle Scholar
Spitkovsky, A. 2008 Astrophys. J. Lett. 682, L5.CrossRefGoogle Scholar
Tautz, R. C. and Schlickeiser, R. 2007 Phys. Plasmas 14, 102102.CrossRefGoogle Scholar
Watson, K. M., Bludman, S. A. and Rosenbluth, M. N. 1960 Phys. Fluids 3, 741.CrossRefGoogle Scholar
Yoon, P. H. 2007 Phys. Plasmas 14, 064504.CrossRefGoogle Scholar