Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T03:59:45.686Z Has data issue: false hasContentIssue false

Relativistic effects on strong Langmuir turbulence

Published online by Cambridge University Press:  13 March 2009

H. P. Freund
Affiliation:
Science Applications, Inc., McLean, Virginia 22101
C. S. Liu
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742.
R. M. Kulsrud
Affiliation:
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540.

Extract

The relativistic effects on strong Langmuir turbulence which arise from both relativistic plasma temperatures and high-amplitude oscillations (i.e. the oscillatory electron velocity in the wave approaches the speed of light) are considered. When relativistic effects arise primarily from high plasma temperature, a kinetic formalism is employed and a nonlinear Schrüdinger equation is derived from expansion of the Vlasov-Maxwell equations. The analysis is appropriate to either hydrogen or electron-positron plasmas, and the relativistic effect is found to provide a new type of nonlinear phase-amplitude coupling in three dimensions. A fluid treatment is used when the relativistic effects of high wave amplitudes predominate. Here, ion dynamics are ignored and the relativistic electron mass correction results in the same type of three-dimensional phase-amplitude coupling as in the kinetic analysis. A Lagrangian formalism for each limiting case is described which leads to a virial theorem from which thresholds for collapse of arbitrary wave packets can be derived.

Type
Articles
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bardwell, S., & Goldman, M. V. 1976 Astrophys. J. 209, 912.CrossRefGoogle Scholar
Buti, B. 1978 Astrophys. Space Sci. 58, 89.CrossRefGoogle Scholar
Degtyarev, L. M., Zakharov, V. E. & Rudakov, L. I. 1975 Soviet Phys. JETP, 41, 57.Google Scholar
Degtyarev, L. M., Zakharov, V. E. & Rudakov, L. I. 1976 Soviet J. Plasma Phys. 2, 240.Google Scholar
Denavit, J., Pereira, N. R. & Sudan, R. N. 1974 Phys. Rev. Lett. 33, 1435.CrossRefGoogle Scholar
Drake, J. F., & Lee, Y. C. 1976 Phys. Fluids, 19, 1772.CrossRefGoogle Scholar
Freund, H. P., Haber, I., Palmadesso, P. & Papadopoulos, K. 1981 Phys. Fluids, 23, 518.CrossRefGoogle Scholar
Gibbons, J., Thornhill, S. G., Wardrop, M. J. & Ter Haar, D. 1977 J. Plasma Phys. 17, 153.CrossRefGoogle Scholar
Goldman, M. V., & Nicholson, D. R. 1978 Phys. Rev. Lett. 41, 406.CrossRefGoogle Scholar
Goldman, M. V., Rypdal, K. & Hafizi, B. 1979 Report no. 1034, University of Colorando.Google Scholar
Goldstein, M. L., Smith, R. A. & Papadopoulos, K. 1979 Astrophys. J. 234, 683.CrossRefGoogle Scholar
Hill, E. L. 1957 Rev. Mod. Phys. 23, 253.CrossRefGoogle Scholar
Kaw, P., & Dawson, J. 1970 Phys. Fluids, 13, 472.CrossRefGoogle Scholar
Kaw, P., Kruer, W. L., Liu, C. S. & Nishikawa, K. 1976 Advance in Plasma Physics (ed. Thompson, W. B. and Simon, A. vol. 6, p. 1. WileyGoogle Scholar
Khakimova, M., & Tsytovich, V. N. 1978 Radiophys. Quantum Electron. 21, 433.CrossRefGoogle Scholar
Manheimer, W. M., & Papadopoulos, K. 1975 Phys. Fluids 18, 1391.Google Scholar
Max, C., & Perkins, F. 1971 Phys. Rev. Lett. 27, 1342.CrossRefGoogle Scholar
Nishikawa, K. 1968 a J. Phys. Soc. Jap. 24, 916.CrossRefGoogle Scholar
Nishikawa, K. 1968 b J. Phys. Soc. Jap. 24, 1152.CrossRefGoogle Scholar
Nishikawa, K., Lee, Y. C. & Liu, C. S. 1975 Comments Plasma Phys. 2, 63.Google Scholar
Papadopoulos, K. 1975 Phys. Fluids, 18, 1769.CrossRefGoogle Scholar
Papadopoulos, K., & Freund, H. P. 1979 Comments Plasma Phys. 5, 113.Google Scholar
Papadopoulos, K., Goldstein, M. L. & Smith, R. A. 1974 Astrophys. J. 190, 175.CrossRefGoogle Scholar
Pereira, N. R., Sudan, R. N. & Denavit, J. 1977 Phys. Fluids, 20, 271.CrossRefGoogle Scholar
Rowland, H., & Papadopoulos, K. 1977 Phys. Rev. Lett. 39, 1276.CrossRefGoogle Scholar
Rudakov, L. I., & Tsytovich, V. N. 1978 Phys. Lett. C40, 1.Google Scholar
Smith, R. A., Goldstein, M. L. & Papadopoulos, K. 1976 Solar Phys. 46, 515.CrossRefGoogle Scholar
Smith, R. A., Goldstein, M. L. & Papadopoulos, K. 1979 Astrophys. J. 234, 348.CrossRefGoogle Scholar
Spatschek, K. H. 1977 Phys. Rev. A 16, 2470.CrossRefGoogle Scholar
Thornhill, S. G., & Ter Haar, D. 1978 Phys. Lett. C 43, 43.Google Scholar
Tsintsadze, N. L. 1971 Soviet Phys. JETP, 32, 684.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves, ch. 17. Wiley.Google Scholar
Zakharov, V. E. 1972 Soviet Phys. JETP, 35, 908.Google Scholar