Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T11:29:39.782Z Has data issue: false hasContentIssue false

Relativistic kinetic theory of the large-amplitude transverse Alfvén wave

Published online by Cambridge University Press:  13 March 2009

Aaron Barnes
Affiliation:
Space Sciences Division, Ames Research Center, NASA, Moffett Field, California 94035
Graham C. J. Suffolk
Affiliation:
Space Sciences Division, Ames Research Center, NASA, Moffett Field, California 94035

Abstract

It is shown that the relativistic Vlasov–Maxwell equations admit a solution very much like the transverse Alfvén wave of magnetohydrodynamic theory. This wave propagates as a plane electromagnetic wave of arbitrary amplitude, is noncompressive, is associated with fluctuations in direction (but not magnitude) of magnetic field, is characterized by a non-linear ‘dispersion relation’, and reduces in the limit of small amplitude to the transverse Alfvén mode of linearized plasma wave theory. The dispersion relation yields a criterion for the firehose instability which turns out to be the same as that derived from linearized theory.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B. 1968 a Phys. Fluids 11, 1162.Google Scholar
Abraham-Shrauner, B. 1968 b Phys. Fluids 11, 2768.Google Scholar
Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1967 Collective Oscillations in a Plasma. Cambridge, Mass.: MIT Press.Google Scholar
Alfvén, H. 1942 Ark. för Mat., Astron. o. Fysik. 29B, 1.Google Scholar
Alfvén, H. & Fälthammar, 1963 Cosmical Electrodynamics. Oxford: Clarendon Press.Google Scholar
Barnes, A. 1966 Phys. Fluids 9, 1483.Google Scholar
Belcher, J. W., Davis, L. & Smith, E. J. 1969 J. Geophys. Res. 74, 2302.CrossRefGoogle Scholar
Bell, T. F. 1965 Phys. Fluids 8, 1829.CrossRefGoogle Scholar
Bernstein, I. B., Greene, J-. M. & Kruskal, M. D. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Chew, G. F., Goldberger, M. L. & Low, F. L. 1956 Proc. Roy. Soc. A 236, 112.Google Scholar
Feldman, W. C. 1970 Private communication.Google Scholar
Ferraro, V. C. A. 1955 Proc. Roy. Soc. A 233, 310.Google Scholar
Gibbons, J. J. & Hartle, R. E. 1967 Phys. Fluids 10, 189.CrossRefGoogle Scholar
Hoh, F. C. 1968 J. Plasma Phys. 2, 509.CrossRefGoogle Scholar
Jeffrey, A. & Taniuti, T. 1964 Nonlinear Wave Propagation with Applications to Physics and Magnetohydrodynamics. New York: Academic Press.Google Scholar
Kantrowitz, A. & Petschek, H. E. 1966 In Plasma Physics in Theory and Application, Kunkel, W. B., ed., p. 148. New York: McGraw-Hill.Google Scholar
Kennel, C. F. & Petschek, H. E. 1968 In Physics of the Magnetosphere, Carovillano, R. L., McClay, J. F. &Radoski, H. R., eds., p. 485. Dordrecht, Netherlands: Reidel.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1960 Electrodynamics of Continuous Media. Reading, Mass.: Addison-Wesley.Google Scholar
Lerche, I. 1966 Astrophys. J. 145, 806.CrossRefGoogle Scholar
Lerche, I. 1967 Astrophys. J. 147, 681.CrossRefGoogle Scholar
Lerche, I. 1997 Advances in Plasma Physics 2 eds. Simon, A. and Thompsn, W. B.. New York, N.Y.: Interscience.Google Scholar
Noerdlinger, P. D. 1966 Phys. Fluids 9, 140.CrossRefGoogle Scholar
Noerdlinger, P. D. & Yui, A. K. 1968 Astrophys. J. 151, 901.CrossRefGoogle Scholar
Scargle, J. D. 1968 Astrophys. J. 151, 791.Google Scholar
Scargle, J. D. 1969 Astrophys. J. 156, 401.Google Scholar
Sonnerup, B. U. Ö. & Su, S. Y. 1967 Phys. Fluids 10, 462.CrossRefGoogle Scholar
Stepanov, K. N. 1958 Zh. Eksperim. i. Teor. Fiz. 34, 1292. [English transl.: 1958. Soviet Phys. JETP, 7, 892.]Google Scholar
Su, S. Y. & Sonnerup, B. U. Ö. 1968 Phys. Fluids 11, 851.Google Scholar
Tajiri, M. 1967 J. Phys. Soc. Japan 22, 1482.CrossRefGoogle Scholar
Unti, T. W. J. & Neugebauer, M. 1968 Phys. Fluids 11, 563.Google Scholar
Weibel, E. S. 1967 Plasma Phys. 9, 665.Google Scholar