Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T04:41:22.963Z Has data issue: false hasContentIssue false

Resonantly unstable off-angle hydromagnetic waves

Published online by Cambridge University Press:  13 March 2009

C. F. Kennel
Affiliation:
International Centre for Theoretical Physics, International Atomic Energy Agency, Trieste
H. V. Wong
Affiliation:
International Centre for Theoretical Physics, International Atomic Energy Agency, Trieste

Abstract

We consider semi-quantitatively the cyclotron resonance instability of ion cyclotron and magnetosonic waves propagating at an angle to the magnetic field in an infinite uniform plasma. The velocity distributions of electrons and ions consist of a dense cold component and a diffuse high-energy tail. If the high-energy protons are sufficiently intense and their pitch angle distributions sufficiently anisotropic, instability occurs for those waves propagating parallel to the magnetic field. If the spectrum of resonant protons is sufficiently hard, a reasonably large cone of propagating angles about the magnetic field can be unstable. Observed fluxes of trapped protons in the magnetosphere should destabilise the ion cyclotron wave at a lower intensity threshold than for at least one class of electrostatic waves.

Type
Articles
Copyright
Copyright © Cambridge University Press 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allis, W. P., Buchsbaum, S. J. & Bees, A. 1963 Waves in Anisotropic Plasmas. M.I.T. Press.Google Scholar
Andronov, A. A. & Trakhtengerts, V. V. 1964 Geomagnetism and Aeronomy 4, 181. (English translation.)Google Scholar
Angerami, J. J. & Carpenter, D. L. 1966 J. Geophys. Res. 71, 711.CrossRefGoogle Scholar
Brice, N. 1964 J. Geophys. Res. 69, 4515.CrossRefGoogle Scholar
Carpenter, D. L. 1966 J. Geophys. Res. 71, 693.CrossRefGoogle Scholar
Cornwall, J. M. 1965 J. Geophys. Res. 70, 61.CrossRefGoogle Scholar
Cornwall, J. M. 1966 J. Geophys. Res. 71, 2185.CrossRefGoogle Scholar
Davis, L. R. & Williamson, J. M. 1963 Space Research, Vol. III, Proceedings of Third Annual COSPAR Meeting. Ed. Priester, W.. London: Pergamon Press.Google Scholar
Frank, L. A. 1965 J. Geophys. Res. 70, 1593.CrossRefGoogle Scholar
Galeev, A. A. 1966 Soviet Physics—JETP 22, 466.Google Scholar
Kennel, C. F. & Engelmann, F. 1966 Phys. Fluids 9.Google Scholar
Kennel, C. F. & Petschek, H. E. 1966 J. Geophys. Res. 71, 1.CrossRefGoogle Scholar
Kennel, C. F. & Wong, H. V. 1967 J. Plasma Phys. 1, 75.CrossRefGoogle Scholar
Pearlstein, L. D., Rosenbluth, M. N. & Chang, D. B. 1966 Phys. Fluids 9, 953.CrossRefGoogle Scholar
Post, R. F. & Rosenbluth, M. N. 1966 Phys. Fluids 9, 730.CrossRefGoogle Scholar
Rosenbluth, M. N. & Post, R. F. 1965 Phys. Fluids 8, 547.CrossRefGoogle Scholar
Sagdeev, R. Z. & Shafronov, V. D. 1961 Soviet Physics—JETP 12, 130.Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. New York: McGraw-Hill.Google Scholar
Vedenov, A. A., Velikhov, E. P. & Sagdeev, R. Z. 1965 Nuclear Fusion, Suppl. 2, 465.Google Scholar
Watanabe, T. 1965 J. Geophys. Res. 70, 5839.CrossRefGoogle Scholar
Watson, G. N. 1962 A Treatise on the Theory of Bessel Functions, 2nd Edition. Cambridge University Press.Google Scholar