Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T06:58:54.521Z Has data issue: false hasContentIssue false

Role of Z-pinches in magnetic reconnection in space plasmas

Published online by Cambridge University Press:  08 September 2014

Vyacheslav Olshevsky*
Affiliation:
Department of Mathematics, Centre for Mathematical Plasma Astrophysics (CmPA), KU Leuven, Celestijnenlaan 200B, bus 2400 B-3001 Leuven, Belgium Main Astronomical Observatory of NAS, 27 Akademika Zabolotnoho st., 03680, Kyiv, Ukraine
Giovanni Lapenta
Affiliation:
Department of Mathematics, Centre for Mathematical Plasma Astrophysics (CmPA), KU Leuven, Celestijnenlaan 200B, bus 2400 B-3001 Leuven, Belgium
Stefano Markidis
Affiliation:
High Performance Computing and Visualization (HPCViz), KTH Royal Institute of Technology, Stockholm, Sweden
Andrey Divin
Affiliation:
Disciplinary Domain of Science and Technology, Swedish Institute of Space Physics, Uppsala Division, SE-751 21, Uppsala, Sweden
*
Email address for correspondence: sya@mao.kiev.ua

Abstract

A widely accepted scenario of magnetic reconnection in collisionless space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is commonly studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present initially, and Z-pinches are formed during the simulation along the lines of spiral null-points. The non-spiral null-points are more stable than spiral ones, and no substantial energy dissipation is associated with them. On the contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of ~1.5% per ion gyro period. Dissipation in similar structures is a likely scenario in space plasmas with large fraction of spiral null-points.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baumann, G. and Nordlund, Å. 2012 Particle-in-cell simulation of electron acceleration in solar coronal jets. Astrophys. J. Lett. 759, L9.Google Scholar
Biskamp, D. 2000 Magnetic Reconnection in Plasmas, Cambridge University Press.CrossRefGoogle Scholar
Brandenburg, A. and Lazarian, A. 2013 Astrophysical hydromagnetic turbulence. Space Sci. Rev. 178, 163200.Google Scholar
Che, H., Drake, J. F. and Swisdak, M. 2011 A current filamentation mechanism for breaking magnetic field lines during reconnection. Nature 474, 184187.Google Scholar
Collier, M. R., Hamilton, D. C., Gloeckler, G., Bochsler, P. and Sheldon, R. B. 1996 Neon-20, oxygen-16, and helium-4 densities, temperatures, and suprathermal tails in the solar wind determined with WIND/MASS. Geophys. Res. Lett. 23, 11911194.Google Scholar
Dalla, S. and Browning, P. K. 2005 Particle acceleration at a three-dimensional reconnection site in the solar corona. Astron. Astrophys. 436, 11031111.Google Scholar
Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B. and Bowers, K. J. 2011 Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Phys. 7, 539542.Google Scholar
Egedal, J., Fasoli, A., Porkolab, M. and Tarkowski, D. 2000 Plasma generation and confinement in a toroidal magnetic cusp. Rev. Sci. Instrum. 71, 33513361.CrossRefGoogle Scholar
Freidberg, J. P. 1987 Ideal Magnetohydrodynamics (Modern Perspectives in Energy), Cambridge University Press.CrossRefGoogle Scholar
Freidberg, J. P. 2008 Plasma Physics and Fusion Energy, Cambridge University Press.Google Scholar
Furno, I., Intrator, T. P., Lapenta, G., Dorf, L., Abbate, S. and Ryutov, D. D. 2007 Effects of boundary conditions and flow on the kink instability in a cylindrical plasma column. Phys. Plasmas 14 (2), 022 103.Google Scholar
Galsgaard, K. and Nordlund, Å. 1997 Heating and activity of the solar corona. 3. Dynamics of a low beta plasma with three-dimensional null points. J. Geophys. Res. 102, 231248.Google Scholar
Galsgaard, K. and Pontin, D. I. 2011 Current accumulation at an asymmetric 3D null point caused by generic shearing motions. Astron. Astrophys. 534, A2.Google Scholar
Gloeckler, G. 2003 Ubiquitous suprathermal tails on the solar wind and pickup ion distributions. In: Solar Wind Ten (American Institute of Physics Conference Series) Vol. 679 (ed. Velli, M., Bruno, R., Malara, F. and Bucci, B.) pp. 583–588.Google Scholar
Greene, J. M. 1988 Geometrical properties of three-dimensional reconnecting magnetic fields with nulls. J. Geophys. Res. 93, 85838590.Google Scholar
Hesse, M. and Schindler, K. 1988 A theoretical foundation of general magnetic reconnection. J. Geophys. Res. 93, 55595567.Google Scholar
Intrator, T. P., Sun, X., Lapenta, G., Dorf, L. and Furno, I. 2009 Experimental onset threshold and magnetic pressure pile-up for 3D reconnection. Nature Physics 5, 521526.Google Scholar
Kadomtsev, B. B. 1966 Hydromagnetic stability of a plasma. Rev. Plasma Phys. 2, 153.Google Scholar
Karimabadi, H., Roytershteyn, V., Daughton, W. and Liu, Y.-H. 2013a Recent evolution in the theory of magnetic reconnection and its connection with turbulence. Space Sci. Rev. 178, 307323.Google Scholar
Karimabadi, H. et al. 2013b Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20 (1), 012 303.Google Scholar
Lapenta, G., Goldman, M., Newman, D., Markidis, S. and Divin, A. 2014 Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnectiona). Phys. Plasmas 21 (5), 055 702.Google Scholar
Lau, Y.-T. and Finn, J. M. 1990 Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J. 350, 672691.Google Scholar
Markidis, S., Lapenta, G. and , Rizwan-uddin 2010 Multi-scale simulations of plasma with iPIC3D. Math. Comput. Simul. 80, 15091519.Google Scholar
Montgomery, M. D., Bame, S. J. and Hundhausen, A. J. 1968 Solar wind electrons: Vela 4 measurements. J. Geophys. Res. 73, 4999.Google Scholar
Olshevsky, V., Lapenta, G. and Markidis, S. 2013 Energetics of kinetic reconnection in a three-dimensional null-point cluster. Phys. Rev. Lett. 111 (4), 045 002.CrossRefGoogle Scholar
Osman, K. T., Matthaeus, W. H., Gosling, J. T., Greco, A., Servidio, S., Hnat, B., Chapman, S. C. and Phan, T. D. 2014 Magnetic reconnection and intermittent turbulence in the solar wind. Phys. Rev. Lett. 112 (21), 215 002.Google Scholar
Osman, K. T., Matthaeus, W. H., Greco, A. and Servidio, S. 2011 Evidence for inhomogeneous heating in the solar wind. Astrophys. J. Lett. 727, L11.Google Scholar
Parker, E. N. 1957 Sweet's mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509520.Google Scholar
Petschek, H. E. 1964 Magnetic field annihilation. NASA Spec. Publ. 50, 425.Google Scholar
Priest, E. and Forbes, T. 2000 Magnetic Reconnection, Cambridge University Press.Google Scholar
Priest, E. R. and Pontin, D. I. 2009 Three-dimensional null point reconnection regimes. Phys. Plasmas 16 (12), 122 101.CrossRefGoogle Scholar
Retinò, A., Sundkvist, D., Vaivads, A., Mozer, F., André, M. and Owen, C. J. 2007 In situ evidence of magnetic reconnection in turbulent plasma. Nature Phys. 3, 236238.Google Scholar
Sahraoui, F., Huang, S. Y., Belmont, G., Goldstein, M. L., Rétino, A., Robert, P. and De Patoul, J. 2013 Scaling of the electron dissipation range of solar wind turbulence. Astrophys. J. 777, 15.Google Scholar
Servidio, S., Matthaeus, W. H., Shay, M. A., Cassak, P. A. and Dmitruk, P. 2009 Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 102 (11), 115 003.Google Scholar
Stanier, A., Browning, P. and Dalla, S. 2012 Solar particle acceleration at reconnecting 3D null points. Astron. Astrophys. 542, A47.Google Scholar
Sweet, P. A. 1958 The neutral point theory of solar flares. In: Electromagnetic Phenomena in Cosmical Physics, Vol. 6 (ed. Lehnert, B.), IAU Symposium p. 123.Google Scholar
Xiao, C. J. et al. 2006 In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail. Nature Phys. 2, 478483.Google Scholar
Yamada, M., Kulsrud, R. and Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82, 603664.Google Scholar
Yamada, M., Ren, Y., Ji, H., Breslau, J., Gerhardt, S., Kulsrud, R. and Kuritsyn, A. 2006 Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality. Phys. Plasmas 13, 052 119.Google Scholar
Zenitani, S., Hesse, M., Klimas, A. and Kuznetsova, M. 2011 New measure of the dissipation region in collisionless magnetic reconnection. Phys. Rev. Lett. 106 (19), 195 003.Google Scholar

Olshevsky Supplementary Material

Supplementary Material

Download Olshevsky Supplementary Material(Video)
Video 9.1 MB