Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T12:14:09.991Z Has data issue: false hasContentIssue false

Rotating magnetohydrodynamics

Published online by Cambridge University Press:  13 March 2009

X. Shan
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755–3528, U.S.A.
D. Montgomery
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755–3528, U.S.A.

Abstract

It is shown that rotation of a periodic column of magnetohydrodynamic fluid can be stabilized against current-driven instabilities by rotation. The rotation is considered as resulting from a slight departure from overall charge neutrality, and is braked by wall friction (loss of angular momentum to the cylinder wall). Both effects are modelled phenomenologically in the equation of motion, and the emphasis is on their bulk dynamic effects rather their microscopic kinetic theory origins. Much as rotation is known to stabilize a Navier—Stokes fluid against transverse displacements, it is shown that sufficient rotation will suppress the helical vortices and helical deformations of the current channel that are known to result when the axial current in the column exceeds its stability threshold.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acheson, D. J. 1990 Elementary Fluid Dynamics. Clarendon.CrossRefGoogle Scholar
Agim, Y. Z. & Montgomery, D. 1991 Plasma Phys. Contr. Fusion 33, 881.Google Scholar
Asdex Team 1989 Nucl. Fusion 29, 1959.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Burrell, K. H., Carlstrom, T. N., Doyle, E. J., Finkenthal, D., Gohil, P., Groebner, R. J., Hillis, D. L., Kim, J., Matsumoto, H., Moyer, R. A., Osborne, T. H., Rettig, .C. L., Peebles, W. A., Rhodes, T. L., St John, H., Stambaugh, R. D., Wade, M. R. & Watkins, J. G. 1992 Plasma Phys. Contr. Fusion 34, 1859.CrossRefGoogle Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.CrossRefGoogle Scholar
Carreras, B. A., Hicks, H. R., Holmes, J. A. & Waddell, B. V. 1980 Phys. Fluids 23, 1811.CrossRefGoogle Scholar
Chen, H. & Montgomery, D. 1993 J. Plasma Phys. 49, 341.CrossRefGoogle Scholar
Chen, H., Shan, X. & Montgomery, D. 1990 Phys. Rev. A 42, 6158.Google Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Hicks, H. R., Carreras, B. A., Holmes, J. A., Lee, D. K. & Waddell, B. V. 1981 J. Comp. Phys. 44, 46.Google Scholar
Montgomery, D. 1992 Plasma Phys. Contr. Fusion 34, 1157.Google Scholar
Montgomery, D. 1993 Plasma Phys. Contr. Fusion 35, B105.CrossRefGoogle Scholar
Montgomery, D., Chen, H. & Shan, X. 1991 Plasma Phys. Contr. Fusion 33, 1871.CrossRefGoogle Scholar
Montgomery, D., Phillips, L. & Theobald, M. L. 1989 Phys. Rev. A 40, 1515.CrossRefGoogle Scholar
Shan, X. & Montgomery, D. 1993 a Plasma Phys. Contr. Fusion 35, 619.Google Scholar
Shan, X. & Montgomery, D. 1993 b Plasma Phys. Contr. Fusion 35, 1019.Google Scholar
Shan, X., Montgomery, D. & Chen, H. 1991 Phys. Rev. A 44, 6800.Google Scholar
Taylor, R. J., Brown, M. L., Fried, B. D., Grote, H., Liberati, J. R., Morales, G. J. & Pribyl, P. 1989 Phys. Rev. Lett. 63, 2365.CrossRefGoogle Scholar
Tynan, G. R., Schmitz, L., Conn, R. W., Doerner, R. & Lehmer, R. 1992 Phys. Rev. Lett. 68, 3032.CrossRefGoogle Scholar
Zohm, H., Asdex-Upgrade Team, and NI and ICRH Group 1994 Phys. Rev. Lett. 72, 222.CrossRefGoogle Scholar