Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T14:25:10.506Z Has data issue: false hasContentIssue false

Self-focusing and self-channelling of short circularly laser pulses propagating in a magnetized plasma channel

Published online by Cambridge University Press:  13 July 2015

Davood Hassanpour*
Affiliation:
Department of Physics, Tabriz University, Tabriz, Iran Space Thrusters Institute, P.O. Box 51745-346, Tabriz, Iran
Mohammad Ghorbanalilu
Affiliation:
Department of Physics, Shahid-Beheshti University, Tehran, Iran
*
Email address for correspondence: jpp@damtp.cam.ac.uk

Abstract

In this study, non-paraxial nonlinear propagation of a relativistic laser pulse with linear and circular polarization in a preformed plasma channel having a parabolic density profile is investigated. The circular laser spot size variation in the absence/presence of an external longitudinal magnetic field is separately analysed and the results are compared. The amplitude of oscillation is decreased in the relativistic case, but it is changed in the presence of an external field. The right-turn circular pulse behaviour is completely opposite to that of the left-turn circular pulse in the presence of an external field, because the right-turn pulse is focused later than the left-turn pulse. The effect of nonlinearities on oscillations of spot size is analysed and the nonlinear critical channel depth required for propagation of a self-trapped laser pulse is evaluated. The laser field amplitude is derived for a matched pulse and it is shown that the group velocity dispersion effect causes broadening of the pulse length.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borisov, B., Borovskiy, A. V., Korobkin, V. V., Prokhorov, A. M., Shiryaev, O. B., Shi, X. M., Luk, T. S., McPherson, A., Solem, J. C., Boyer, K. & Rhodes, C. K. 1992 Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 68, 23092312.Google Scholar
Borisov, B., Borovskiy, A. V., Shiryaev, O. B., Korobkin, V. V., Prokhorov, A. M., Solem, J. C., Luk, T. S., Boyer, K. & Rhodes, C. K. 1992 Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 58305845.CrossRefGoogle ScholarPubMed
Chessa, P., Mora, P. & Antonsen, T. 1998 Numerical simulation of short laser pulse relativistic self-focusing in underdense plasma. Phys. Plasmas 5, 34513458.Google Scholar
Cicchitelli, L., Hora, H. & Postle, R. 1990 Longitudinal field components for laser beams in vacuum. Phys. Rev. A 41, 37273732.Google Scholar
Eder, D. C., Amendt, P., Dasilva, L. B., London, R. A., McGowan, B. J., Matthews, D. L., Penetrqante, B. M., Rosen, M. D., Wilks, S. C., Donnelly, T. D., Falcone, R. W. & Strobel, G. L. 1994 Tabletop X-ray lasers. Phys. Plasmas 1, 17441752.CrossRefGoogle Scholar
Ehrlich, Y., Cohen, C., Zigler, A., Krall, J., Sprangle, P. & Esarey, E. 1996 Guiding of high intensity laser pulses in straight and curved plasma channel experiments. Phys. Rev. Lett. 77, 41864189.CrossRefGoogle ScholarPubMed
Esarey, E. & Leemans, W. P. 1999 Nonparaxial propagation of ultrashort laser pulses in plasma channels. Phys. Rev. E 59, 10821095.Google Scholar
Esarey, E., Schroeder, C. B., Shadwick, B. A., Wurtele, J. S. & Leemans, W. P. 2000 Nonlinear theory of nonparaxial laser pulse propagation in plasma channels. Phys. Rev. Lett. 84, 30813084.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. 1996 Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. 1997 Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33, 18791914.Google Scholar
Ghorbanalilu, M. 2010 Focusing of intense laser beam by axially magnetized plasma lens. Phys. Plasmas 17, 023111.Google Scholar
Hafizi, B., Ting, A., Hubbard, R. F., Sprangle, P. & Penano, J. R. 2003 Relativistic effects on intense laser beam propagation in plasma channels. Phys. Plasmas 10, 14831492.CrossRefGoogle Scholar
Hafizi, B., Ting, A., Sprangle, P. & Hubbard, R. F. 2000 Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62, 41204125.CrossRefGoogle ScholarPubMed
Hora, H. 1975 Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.Google Scholar
Hora, H., Hoelss, M., Scheid, W., Wang, J. X., Ho, Y. K., Osman, F. & Castillo, R. 2000 Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.Google Scholar
Jones, D. L., Kane, E. L., Lalousis, P., Wiles, P. R. & Hora, H. 1982 Density modification and energetic ion production at relativistic self focusing of laser beams in plasmas. Phys. Fluids 25, 22952301.Google Scholar
Max, C., Arons, J. & Langdon, A. B. 1974 Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.Google Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F. & Mainfray, G. 1995 Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 29532956.Google Scholar
Pallavi, J., Navina, W., Ajay, K. U. & Gaurav, R. 2004 Self-focusing and channel-coupling effects on short laser pulses propagating in a plasma channel. Phys. Plasmas 11 (6), 32593263.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. 1996 Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 39753978.CrossRefGoogle ScholarPubMed
Sodha, M. S., Patel, L. A. & Sharma, R. P. 1978 Effect of nonlinear absorption on self-focusing of a laser beam in a plasma. J. Appl. Phys. 49, 37073713.Google Scholar
Sprangle, P., Esarey, E., Krall, J. & Joyce, G. 1992 Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 22002203.CrossRefGoogle ScholarPubMed
Sprangle, P., Hafizi, B. & Penano, J. R. 2000 Laser pulse modulation instabilities in plasma channels. Phys. Rev. E 61, 43814393.Google Scholar
Sprangle, P., Tang, C. M. & Esarey, E. 1987 Relativistic self-focusing of short-pulse radiation beams in plasmas. IEEE Trans. Plasma Sci. 15, 145153.Google Scholar
Sun, G. Z., Ott, E., Lee, Y. C. & Guzdar, P. 1987 Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.Google Scholar
Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. & Mason, R. J. 1994 Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Umstadter, D. 2001 Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.Google Scholar
Yariv, A. 1989 Quantum Electronics, 3rd edn. p. 106. Wiley.Google Scholar