Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T13:26:03.986Z Has data issue: false hasContentIssue false

Set of wires to simulate tokamaks with poloidal divertor

Published online by Cambridge University Press:  12 April 2013

T. KROETZ
Affiliation:
Universidade Tecnológica Federal do Paraná, Pato Branco, Paraná, 85503-390, Brazil
CAROLINE G. L. MARTINS
Affiliation:
Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo, 12228-900, Brazil (marisar@ita.br)
M. ROBERTO
Affiliation:
Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo, 12228-900, Brazil (marisar@ita.br)
I. L. CALDAS
Affiliation:
Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, Brazil

Abstract

Simple wire models have been proposed to simulate magnetic configurations in tokamaks. Here we consider electric currents in five parallel infinite wires to obtain double-null magnetic surfaces with specific choices of magnetic axis positions, triangularity, and elongation. As an example, we choose the position and the electric current of each wire to obtain magnetic surfaces similar to those expected in the tokamak international thermonuclear experimental reactor. Moreover, we also integrate the perturbed field line differential equation to simulate chaotic layers near the hyperbolic points and deposition patterns at the divertor plate observed in tokamaks. To simulate that, we add to the model a perturbing error field, due to asymmetries in the tokamak coils, and introduce a random collisional term to the field line mapping to reproduce escape pattern alterations due to particle collisions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullaev, S. S., Finken, K. H., Jakubowski, M. and Lehnen, M. 2006 Mappings of stochastic field lines in poloidal divertor tokamaks. Nucl. Fusion 46, S113.CrossRefGoogle Scholar
Ali, H., Punjabi, A. and Boozer, A. 2008 Stochastic layer scaling in the two-wire model for divertor tokamaks. J. Plasma Phys 75, 303.CrossRefGoogle Scholar
Ali, H., Punjabi, A., Boozer, A. and Evans, T. E. 2004 The low MN map for single-null divertor tokamaks. Phys. Plasmas 11, 1908.CrossRefGoogle Scholar
Artaud, J. F.et al. 2010 The CRONOS suite of codes for integrated tokamak modelling. Nucl. Fusion 50, 043001.CrossRefGoogle Scholar
Beaufume, P., Dubois, M. A. and Mohamed Benkadda, M. S. 1990 Diffusion in the noisy Chirikov-Taylor mapping. Phys. Lett. A 147, 87.CrossRefGoogle Scholar
Boozer, A. H. and Rechester, A. B. 1978 Effect of magnetic perturbations on divertor scrape-off width. Phys. Fluids 21, 662.CrossRefGoogle Scholar
Brix, M., Hawkes, N. C., Boboc, A., Drozdov, V., Sharapov, S. E. and JET-EFDA Contributors. 2008 Accuracy of EFIT equilibrium reconstruction with internal diagnostic information at JET. Rev. Sci. Instrum. 79, 10F325.CrossRefGoogle ScholarPubMed
Casper, T. A., Meyer, W. H., Pearlstein, L. D. and Portone, A. 2007 ITER shape controller and transport simulations. Fus. Eng. Design 83, 552.CrossRefGoogle Scholar
da Silva, E. C., Caldas, I. L., Viana, R. L. and San Juan, M. A. F. 2002 Escape patterns, magnetic footprints, and homoclinic tangles due to ergodic magnetic limiters. Phys. Plasmas 9, 4917.CrossRefGoogle Scholar
Daybelge, U. and Yarim, C. 1999 Pattern of ion bombardment on the poloidal divertor plates. J. Nucl. Mat. 269, 809811.CrossRefGoogle Scholar
Evans, T. E. 1991 Proceedings of the 18th European Conference on Controlled Fusion and Plasma Physics, Berlin, Germany, Part II. Petit-Lancy, Switzerland: European Physical Society, p. 65.Google Scholar
Evans, T. E., Moyer, R. A. and Monat, P. 2002 Modeling of stochastic magnetic flux loss from the edge of a poloidally diverted tokamak. Phys. Plasmas 9, 4957.CrossRefGoogle Scholar
Frerichs, H., Reiter, D., Schmitz, O., Cahyna, P., Evans, T. E., Feng, Y. and Nardon, E. 2012 Impact of screening of resonant magnetic perturbations in three-dimensional edge plasma transport simulations for DIII-D. Phys. Plasmas 19, 052507.CrossRefGoogle Scholar
Jakubowski, M. W.et al. 2009 Overview of the results on divertor heat loads in RMP controlled H-mode plasmas on DIII-D. Nucl. Fusion 49, 095013.CrossRefGoogle Scholar
Janeschitz, G. 2007 The status of ITER; the ITER design review. Paper presented to Town Meeting on APS-DPP Conference, ITER Design Review, Orlando, FL.Google Scholar
Joseph, I., Evans, T. E., Runov, A. M., Fenstermacher, M. E., Groth, M., Kasilov, S. V., Lasnier, C. J., Moyer, R. A., Porter, G. D., Schaffer, M. J.et al. 2008 Calculation of stochastic thermal transport due to resonant magnetic perturbations in DIII-D. Nucl. Fusion 48, 045009.CrossRefGoogle Scholar
Kroetz, T., Roberto, M., da Silva, E. C., Caldas, I. L. and Viana, R. L. 2008 Divertor map with freedom of geometry and safety factor profile. Phys. Plasmas 15, 092310.CrossRefGoogle Scholar
Pomphrey, N. and Reiman, A. 1992 Effect of nonaxisymmetric perturbations on the structure of a tokamak poloidal divertor. Phys. Fluids B 4, 938.CrossRefGoogle Scholar
Punjabi, A. and Ali, H. 2011 An accurate symplectic calculation of the inboard magnetic footprint from statistical topological noise and field errors in the DIII-D. Phys. Plasmas 18, 022509.CrossRefGoogle Scholar
Reiman, A. 1996 Singular surfaces in the open field line region of a diverted tokamak. Phys. Plasmas 3, 906.CrossRefGoogle Scholar
Roeder, R. K. W., Rapoport, B. I. and Evans, T. E. 2003 Explicit calculations of homoclinic tangles in tokamaks. Phys. Plasmas 10, 3796.CrossRefGoogle Scholar
Schelin, A. B., Caldas, I. L., Viana, R. L. and Benkadda, S. 2011 Collisional effects in the tokamap. Phys. Lett. A 376, 24.CrossRefGoogle Scholar
Schmitz, O.et al. 2008 Aspects of three-dimensional transport for ELM control experiments in ITER-similar shape plasmas at low collisionality in DIII-D. Plasma Phys. Control. Fusion 50, 124029.CrossRefGoogle Scholar
Viana, R. L., da Silva, E. C., Kroetz, T., Caldas, I. L., Roberto, M. and Sanjuan, M. A. F. 2010 Fractal structures in nonlinear plasma physics. Phil. Trans. R. Soc. A 369, 371.CrossRefGoogle Scholar
Wingen, A., Evans, T. E. and Spatschek, K. H. 2009a Footprint structures due to resonant magnetic perturbations in DIII-D. Phys. Plasmas 16, 042504.CrossRefGoogle Scholar
Wingen, A., Evans, T. E. and Spatschek, K. H. 2009b High resolution numerical studies of separatrix splitting due to non-axisymmetric perturbation in DIII-D. Nucl. Fusion 49, 055027.CrossRefGoogle Scholar