Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T10:55:06.217Z Has data issue: false hasContentIssue false

Soft X-ray emission from an anharmonic collisional nanoplasma by a laser–nanocluster interaction

Published online by Cambridge University Press:  22 June 2021

R. Nemati Siahmazgi*
Affiliation:
Department of Physics, University of Guilan, Rasht41335-1914, Iran
S. Jafari*
Affiliation:
Department of Physics, University of Guilan, Rasht41335-1914, Iran
*
Email addresses for correspondence: rnemati@phd.guilan.ac.ir, sjafari@guilan.ac.ir
Email addresses for correspondence: rnemati@phd.guilan.ac.ir, sjafari@guilan.ac.ir

Abstract

The purpose of the present paper is to investigate the generation of soft X-ray emission from an anharmonic collisional nanoplasma by a laser–nanocluster interaction. The electric field of the laser beam interacts with the nanocluster and leads to ionization of the cluster atoms, which then produces a nanoplasma. Because of the nonlinear restoring force in an anharmonic nanoplasma, the fluctuations and heating rate of, as well as the power radiated by, the electrons in the nanocluster plasma will be notably different from those arising from a linear restoring force. By comparing the nonlinear restoring force state (which arises from an anharmonic cluster) with that of the linear restoring force (in harmonic clusters), the cluster temperature specifically changes at the resonant frequency relative to the linear restoring force, while the variation of the anharmonic cluster radius is almost identical to that of the harmonic cluster radius. In addition, it is revealed that a sharp peak of X-ray emission arises after some picoseconds in deuterium, helium, neon and argon clusters.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadirad, M., Yazdani, A. & Rahimi, K. 2019 Optical detection of CO gas by the surface plasmon resonance of Ag nanoparticles and nanoclusters synthesized on a hydrogenated amorphous carbon (a-C:H) film. Eur. Phys. J. Plus 134, 328.CrossRefGoogle Scholar
Balakin, A.V., Dzhidzhoev, M.S., Gordienko, V.M., Esaulkov, M.N., Zhvaniya, I.A., Ivanov, K.A., Kotelnikov, I.A., Kuzechkin, N.A., Ozheredov, I.A. & Panchenko, V.Y. 2017 Interaction of high-intensity femtosecond radiation with gas cluster beam: Effect of pulse duration on joint terahertz and X-ray emission. IEEE. Trans. THz Sci. Technol. 1, 7079.CrossRefGoogle Scholar
Bochkarev, S., Faenov, A., Pikuz, T., Brantov, A.V., Kovalev, V.F., Skobelev, I., Pikuz, S., Kodama, R., Popov, K.I. & Bychenkov, V.Y. 2018 Nanoplasma properties in metallic clusters driven by a Gaussian laser beam in the presence of helical magnetic undulator. Sci. Rep. 8, 9404.CrossRefGoogle Scholar
Chkhalo, N.I., Mikhailenko, M.S., Pestov, A.E., Polkovnikov, V.N., Zorina, M.V., Zuev, S.Y., Kazakov, D.S., Milkov, A.V., Strulya, I.L. & Filichkina, V.A. 2019 Ultrasmooth beryllium substrates for solar astronomy in extreme ultraviolet wavelengths. Appl. Opt. 58 (13), 36523658.CrossRefGoogle ScholarPubMed
Ditmire, T., Springate, E., Tisch, J., Shao, Y., Mason, M., Hay, N., Marangos, J. & Hutchinson, M. 1998 Explosion of atomic clusters heated by high-intensity femtosecond laser pulses. Phys. Rev. A 52, 369382.CrossRefGoogle Scholar
Döppner, T., Müller, J.P., Przystawik, A., Göde, S., Tiggesbäumker, J., Meiwes-Broer, K.H., Varin, C., Ramunno, L., Brabec, T. & Fennel, T. 2010 Steplike intensity threshold behavior of extreme ionization in laser-driven xenon clusters. Phys. Rev. Lett. 105, 053401.CrossRefGoogle ScholarPubMed
Dorchies, F., Blasco, F., Bontè, C., Caillaud, T., Fourment, C. & Peyrusse, O. 2008 Observation of subpicosecond X-ray emission from laser-cluster interaction. PRL 100, 205002.CrossRefGoogle ScholarPubMed
Dorchies, F., Jourdain, N., Lecherbourg, L. & Renaudin, P. 2018 Comparisons of x-ray sources generated from subpicosecond laser-plasma interaction on clusters and on solid targets. Phys. Rev. E 98, 033212.CrossRefGoogle Scholar
Fomichev, S.V., Popruzhenko, S.V., Zaretsky, D.F. & Becker, W. 2003 Laser-induced nonlinear excitation of collective electron motion in a cluster. J. Phys. B: At. Mol. Opt. Phys. 36, 38173834.CrossRefGoogle Scholar
Garmatina, A., Zhvaniya, I.A., Potemkin, F.V. & Gordienko, V.M. 2018 Nanoplasma properties in metallic clusters driven by a Gaussian laser beam in the presence of helical magnetic undulator. Quantum Electron. 48 (7), 648652.CrossRefGoogle Scholar
Gordienko, V., Makarov, I.A., Rakov, E.V. & Savelev, A.B. 2005 Subsurface generation of hard X-rays by a BaF2 target exposed to repetitively pulsed radiation from a femtosecond Cr: forsterite laser at power densities below 1015 W cm−2. Quantum Electron. 35 (6), 487.CrossRefGoogle Scholar
Gupta, P., Sinno, Z., Glover, J.L. Paulter, N.G. & Bovik, A.C. 2019 Predicting detection performance on security X-ray images as a function of image quality. IEEE Trans. Image Process 28, 33283342.CrossRefGoogle ScholarPubMed
Jackson, J.D. 1962 Classical Electrodynamics. Wiley.Google Scholar
Komar, D., Kazak, L., Almassarani, M. Meiwes-Broer, K.-H. & Tiggesbäumker, J. 2018 Highly charged rydberg ions from the coulomb explosion of clusters. Phys. Rev. Lett. 120, 133207.CrossRefGoogle Scholar
Krane, K. 1996 Modern Physics. Wiley & Sons.Google Scholar
Kumarappan, V., Krishnamurthy, M. & Mathur, D. 2002 Two-dimensional effects in the hydrodynamic expansion of xenon clusters under intense laser irradiation. Phys. Rev. A 66, 033203.CrossRefGoogle Scholar
Kumar, M., Singh, R. & Verma, U. 2014 Bremsstrahlung soft X-ray emission from clusters heated by a Gaussian laser beam. Laser Part. Beams 1, 32.Google Scholar
Kumar, M. & Tripathi, V.K. 2009 Rayleigh scattering of a Gaussian laser beam from expanding clusters. Phys. Plasmas 16, 123111.CrossRefGoogle Scholar
Kumar, M. & Tripathi, V.K. 2011 Terahertz generation by nonlinear mixing of laser pulses in a clustered gas. Phys. Plasmas 18, 053105.CrossRefGoogle Scholar
Kumar, M. & Tripathi, V.K. 2013 Nonlinear absorption and harmonic generation of laser in a gas with anharmonic clusters. Phys. Plasmas 20, 023302.CrossRefGoogle Scholar
Myint, A.S., Smith, F.M., Gollins, S., Wong, H., Rao, C., Whitmarsh, K., Sripadam, R., Rooney, P., Hershman, M. & Pritchard, D.M. 2018 Dose Escalation Using Contact X-ray Brachytherapy After External Beam Radiotherapy as Nonsurgical Treatment Option for Rectal Cancer: Outcomes from a Single-Center Experience. Intl J. Radiat. Oncol. Biol. Phys. 100, 565573.CrossRefGoogle Scholar
Nemati Siahmazgi, R. & Jafari, S. 2019 a Effects of the helical magnetic wiggler on a laser beam interacting with a lattice of metallic nanoparticles: plasmonic and body waves. Laser Phys. Lett. 16, 055003.CrossRefGoogle Scholar
Nemati Siahmazgi, R. & Jafari, S. 2019 b Nanoplasma properties in metallic clusters driven by a Gaussian laser beam in the presence of helical magnetic undulator. Appl. Phys. B 125, 206.CrossRefGoogle Scholar
Nguyen, H., Klinskikh, A.F., Meleshenko, P.A. & Semenov, M.E. 2019 On the Cerenkov effect and non-classical states of electromagnetic vacuum: from classical pattern to quantum approach. Eur. Phys. J. Plus 134, 613.CrossRefGoogle Scholar
Ostrikov, K., Beg, F. & Ng, A. 2016 Nanoplasmas generated by intense radiation. Rev. Mod. Phys. 88, 011001(22).CrossRefGoogle Scholar
Owens, T., Mao, S.S., Canfield, E.K., Grigoropoulos, C.P., Mao, X. & Russo, R.E. 2010 Ultrafast thin-film laser-induced breakdown spectroscopy of doped oxides. Appl. Opt. 49 (13), C67C69.CrossRefGoogle Scholar
Pfeiffer, F. 2018 X-ray ptychography. Nat. Photon. 12, 917.CrossRefGoogle Scholar
Pysher, M., Miwa, Y., Shahrokhshahi, R., Bloomer, R. & Pfister, O. 2011 Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505.CrossRefGoogle ScholarPubMed
Roozehdar Mogaddam, S., Sepehri Javan, N., Javidan, K. & Mohammadzadeh, H. 2019 Modulation instability and soliton formation in the interaction of X-ray laser beam with relativistic quantum plasma. Phys. Plasma 26, 062112.CrossRefGoogle Scholar
Scaffidi, J., Pender, J., Pearman, W., Goode, S.R., Colston, B.W., Carter, J.C. & Angel, S.M. 2003 Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. Appl. Opt. 42 (30), 60996106.CrossRefGoogle ScholarPubMed
Schmittberger, B. & Gauthier, D.J. 2014 Enhancing light-atom interactions via atomic bunching. Phys. Rev. A 90, 013813.CrossRefGoogle Scholar
Spangle, P., Essayer, E. & Ting, A. 2011 Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64, 1723.Google Scholar
Springate, E., Aseyev, S.A., Zamith, S. & Vrakking, M.J.J. 2003 Electron kinetic energy measurements from laser irradiation of clusters. Phys. Rev. A 68, 053201.CrossRefGoogle Scholar
Tiwari, P.K. & Tripathi, V.K. 2006 Laser beat-wave excitation of plasma waves in a clustered gas. Phys. Scr. 73, 393.CrossRefGoogle Scholar
Weidler, N., Schuch, J., Knaus, F., Stenner, P., Hoch, S., Maljusch, A., Schäfer, R., Kaiser, B. & Jaegermann, W. 2017 X-ray Photoelectron Spectroscopic Investigation of Plasma Enhanced Chemical Vapor Deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction. J. Phys. Chem. C 121, 64556463.CrossRefGoogle Scholar
Wu, Q., Liu, B., Zhu, Z., Gu, M., Chen, H., Xue, C., Zhao, J., Wu, Y., Tai, R. & Ouyang, X. 2018 Directional emission of plastic luminescent films using photonic crystals fabricated by Soft-X-ray interference lithography and reactive ion etching. Sci. Rep. 8, 9254.CrossRefGoogle ScholarPubMed