Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T11:30:24.508Z Has data issue: false hasContentIssue false

Spatio-temporal evolution of two-plasmon decay in homogeneous plasma

Published online by Cambridge University Press:  30 November 2009

D. R. DIMITRIJEVIĆ
Affiliation:
Department of Physics, Faculty of Sciences and Mathematics, University of Niš, P. O. Box 224, 18001 Niš, Serbia (dimke@junis.ni.ac.rs)
A. A. MALUCKOV
Affiliation:
Department of Physics, Faculty of Sciences and Mathematics, University of Niš, P. O. Box 224, 18001 Niš, Serbia (dimke@junis.ni.ac.rs)

Abstract

A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is utilized to study the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The influence of laser and plasma parameters on the evolution of the amplitudes of the participating waves is discussed, assuming that the secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is the principal mechanism of saturation of the instability. The impact of inherently non-resonant nature of this secondary coupling on the development of TPD is investigated for the first time and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to non-uniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kruer, W. L. 1988 The Physics of Laser Plasma Interactions. Redwood City, CA: Addison-Wesley.Google Scholar
[2]Baldis, H. A., Campbell, E. M. and Kruer, W. L. 1991 Handbook of Plasma Physics: Physics of Laser Plasma, (ed. Rubenchik, A. M. and Witkowski, S.). Amsterdam: Elsevier, 361434.Google Scholar
[3]Goldman, M. V. 1966 Parametric Plasmon-Photon Interactions: Part II. Analysis of Plasmon Propagator and Correlation Functions. Ann. Phys. (N. Y.) 38, 117169.CrossRefGoogle Scholar
[4]Young, F. C., Herbst, M. J., Manka, C. K., Obenschain, S. P. and Gardner, J. H. 1985 Increased Hot-Electron Production at Quarter-Critical Density in Long-Scale-Length Laser-Plasma Interactions. Phys. Rev. Lett. 54, 25092512.CrossRefGoogle ScholarPubMed
[5]Yaakobi, B., Stoeckl, C., Boehly, T., Meyerhofer, D. D. and Seka, W. 2000 Measurement of Preheat Due to Fast Electrons in Laser Implosions. Phys. Plasmas 7, 37143720.CrossRefGoogle Scholar
[6]Stoeckl, C., Bahr, R. E., Yaakobi, B., Seka, W., Pegan, S. P., Craxton, R. S., Delettrez, J. A., Short, R. W., Myatt, J. and Maximov, A. V. 2003 Multibeam Effects on Fast-Electron Generation from Two-Plasmon Decay Instability. Phys. Rev. Lett. 90, 235002-1-4.CrossRefGoogle ScholarPubMed
[7]Russell, D. A. and DuBois, D. F. 2001 (3/2) ω0 Radiation from the Laser-Driven Two-Plasmon Decay Instability in an Inhomogeneous Plasma. Phys. Rev. Lett. 86, 428431.CrossRefGoogle Scholar
[8]Liu, C. S. and Rosenbluth, M. N. 1976 Parametric Decay of Electromagnetic Waves into Two Plasmons and its Consequences. Phys. Fluids 19, 967971.CrossRefGoogle Scholar
[9]Langdon, A. B., Lasinski, B. F. and Kruer, W. L. 1979 Nonlinear Saturation and Recurrence of the Two-Plasmon Decay Instability. Phys. Rev. Lett. 43, 133136.CrossRefGoogle Scholar
[10]Karttunen, S. J. 1981 Ion Fluctuation Effects on the Two-Plasmon Decay and Stimulated Raman Scattering. Phys. Rev. A 23, 20062010.CrossRefGoogle Scholar
[11]Simon, A., Short, R. W., Williams, E. A. and Dewandre, T. 1983 On the Inhomogeneous Two-Plasmon Instability. Phys. Fluids 26, 31073118.Google Scholar
[12]Short, R. W., Seka, W., Tanaka, K. and Williams, E. A. 1984 Two-Plasmon Decay and Three-Halves Harmonic Generation in Filaments in a Laser-Produced Plasma. Phys. Rev. Lett. 52, 14961499.CrossRefGoogle Scholar
[13]Meyer, J, and Houtman, H. 1984 Measurement of Growth Rates, Saturation, and Decay of Two-Plasmon Decay Waves in a CO2-Laser-Irradiated Plasma. Phys. Rev. Lett. 53, 13441347.CrossRefGoogle Scholar
[14]Meyer, J. and Zhu, Y. 1990 Experimental Study of the Relation between the Absolute-Stimulated-Raman and Two-Plasmon-Decay Instabilities. Phys. Rev. Lett. 64, 26512654.CrossRefGoogle ScholarPubMed
[15]Meyer, J. and Zhu, Y. 1993 Measurement of Two Plasmon Decay Instability Development in k Space of a Laser Produced Plasma and Its Relation to 3/2 – Harmonic Generation. Phys. Rev. Lett. 71, 29152918.CrossRefGoogle Scholar
[16]Afeyan, B. B. and Williams, E. A. 1997 A Variational Approach to Parametric Instabilities in Inhomogeneous Plasmas III: Two-Plasmon Decay. Phys. Plasmas 4, 38273844.CrossRefGoogle Scholar
[17]Tarasevitch, A., Dietrich, C., Blome, C., Sokolowski-Tinten, K. and Von der Linde, D. 2003 3/2 Harmonic Generation by Femtosecond Laser Pulses in Steep-Gradient Plasmas. Phys. Rev. E 68, 026410-1-6.Google Scholar
[18]Dimitrijević, D. R. and Jovanović, M. S. 2002 Nonlinear Features of Two-Plasmon Decay in a Long-Scale-Length Plasma. Phys. Rev. E 66, 056408-1-6.CrossRefGoogle Scholar
[19]Baldis, H. A. and Walsh, C. J. 1983 Growth and Saturation of the Two-Plasmon Decay Instability. Phys. Fluids 26, 13641375.Google Scholar
[20]Meyer, J. 1992 Mode Coupling of the Two-Plasmon Decay Instability to Ion-Acoustic Waves and the Effect on (3/2)-Harmonic Emission. Phys. Fluids B 4, 29342941.CrossRefGoogle Scholar
[21]DuBois, D. F., Russell, D. A. and Rose, H. A. 1995 Saturation Spectra of the Two-Plasmon Decay Instability. Phys. Rev. Lett. 74, 39833986.CrossRefGoogle ScholarPubMed
[22]Labaune, C., Baldis, H. A., Bauer, B. S., Tikhonchuk, V. T. and Laval, G. 1998 Time-Resolved Measurements of Secondary Langmuir Waves Produced by the Langmuir Decay in a Laser-Produced Plasma. Phys. Plasmas 5, 234242.CrossRefGoogle Scholar