Published online by Cambridge University Press: 13 December 2013
The optical emission characterization of the plasma-assisted pulsed laser ablation of the magnesium sulfate target is discussed in this study. The emission spectrum produced by the magnesium sulfate plasma in the wavelength range 200–700 nm has been carefully investigated for different experimental conditions. The spectra analysis was performed by assuming the local thermodynamic equilibrium (LTE) approximation and calculating the plasma temperature with the Boltzmann plot method using neutral Mg spectral lines. The plasma temperature was obtained for different positions along the expansion axis, which allowed obtaining the electron population distribution as a function of the distance from the target. The plasma temperature along the expansion axis allowed evaluating the evolution of the excited states population when the plume expands. Moreover, the Stark broadening method has been employed for electron number density measurements. In this study, the Stark width of the Mg (I) spectral line at 285.21 nm was used. Besides, we have studied the variation of electron temperature (Te) and electron number density (Ne) as a function of laser irradiance.