Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T19:50:07.529Z Has data issue: false hasContentIssue false

Stability analysis of partially ionized plasma in a porous medium with local thermal non-equilibrium effects

Published online by Cambridge University Press:  03 January 2025

Vishal Chandel*
Affiliation:
Department of Mathematics and Scientific Computing, National Institute of Technology Hamirpur, Hamirpur 177005, India
Sunil
Affiliation:
Department of Mathematics and Scientific Computing, National Institute of Technology Hamirpur, Hamirpur 177005, India
*
Email address for correspondence: vcvishal1950chandel@gmail.com

Abstract

This study investigates the impact of local thermal non-equilibrium on the stability analysis of partially ionized plasma within a porous medium. The plasma, heated from below, is enclosed by various combinations of bounding surfaces. Both nonlinear (via the energy method) and linear (utilizing the normal mode analysis method) analyses are performed. Eigenvalue problems for both analyses are formulated and solved using the Galerkin method. The study also explores the effects of compressibility, medium permeability and magnetic fields on system stability. The collisional frequency among plasma components and the thermal diffusivity ratio significantly influence energy decay. The results reveal that the Rayleigh–Darcy number is identical for both nonlinear and linear analyses, thus eliminating the possibility of a subcritical region and confirming global stability. The principle of exchange of stabilities is validated, indicating the absence of oscillatory convection modes. Medium permeability, heat-transfer coefficient and compressibility delay the onset of convection, demonstrating stabilizing effects. Conversely, the porosity-modified conductivity ratio hastens the convection process, indicating destabilizing effects. Rigid–rigid bounding surfaces are found to be thermally more stable for confining the partially ionized plasma. Additionally, the magnetic field exerts a stabilizing influence.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnone, G., Capone, F. & Gianfrani, J.A. 2024 Stability of penetrative convective currents in local thermal non-equilibrium. Proc. R. Soc. Lond. A 480 (2287), 20230820.Google Scholar
Ballai, I. 2019 Linear waves in partially ionized plasmas in ionization non-equilibrium. Front. Astron. Space Sci. 6, 39.CrossRefGoogle Scholar
Ballester, J.L., et al. 2018 Partially ionized plasmas in astrophysics. Space Sci. Rev. 214 (2), 58.CrossRefGoogle Scholar
Ballester, J.L., Soler, R., Carbonell, M. & Terradas, J. 2021 The first adiabatic exponent in a partially ionized prominence plasma: effect on the period of slow waves. Astron. Astrophys. 656, A159.CrossRefGoogle Scholar
Bansal, A. & Suthar, O.P. 2022 A study on the effect of temperature modulation on Darcy–Bénard convection using a local thermal non-equilibrium model. Phys. Fluids 34 (4), 044107.CrossRefGoogle Scholar
Bansal, A. & Suthar, O.P. 2024 Temperature modulation effects on chaos and heat transfer in Darcy–Bénard convection using a local thermal non-equilibrium model. Nonlinear Dyn. 112 (18), 1647516493.CrossRefGoogle Scholar
Chandel, V. & Sunil, 2024 Influence of magnetic fields and bounding surface configurations on thermal convection in partially ionised plasmas: nonlinear and linear stability analyses. Pramana – J. Phys. 98 (3), 107.CrossRefGoogle Scholar
Chandel, V., Sunil, & Sharma, P. 2024 Study of global stability of rotating partially-ionized plasma saturating a porous medium. Spec. Top. Rev. Porous Media: Intl J. 15 (6), 2746.CrossRefGoogle Scholar
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Galdi, G.P. & Straughan, B. 1985 Exchange of stabilities, symmetry, and nonlinear stability. Arch. Rat. Mech. Anal. 89 (3), 211228.CrossRefGoogle Scholar
Ingham, D.B. & Pop, I. (Ed.) 2005 Transport Phenomena in Porous Media III. Elsevier.Google Scholar
Kaothekar, S. 2018 Thermal instability of partially ionized viscous plasma with Hall effect FLR corrections flowing through porous medium. J. Porous Media 21 (8), 679699.CrossRefGoogle Scholar
Krishan, V. 2022 Different representations of a partially ionized plasma. J. Astrophys. Astron. 43 (2), 43.CrossRefGoogle Scholar
Kumar, S., Poser, A.J., Schöttler, M., Kleinschmidt, U., Dietrich, W., Wicht, J., French, M. & Redmer, R. 2021 Ionization and transport in partially ionized multicomponent plasmas: application to atmospheres of hot Jupiters. Phys. Rev. E 103 (6), 063203.CrossRefGoogle ScholarPubMed
Kuznetsov, A.V. 1998 Thermal nonequilibrium forced convection in porous media. In Transport Phenomena in Porous Media (ed. D.B. Ingham & I. Pop), pp. 103–129. Pergamon.CrossRefGoogle Scholar
Mahajan, A. & Raj, M. 2024 The impact of internal heating on natural convection in a rectangular porous container. Chin. J. Phys. 90, 651663.CrossRefGoogle Scholar
Maheshwari, S.L. & Bhatia, P.K. 1976 Frictional effects with neutrals and Rayleigh–Taylor instability of a compressible Hall plasma. Beitr. Plasmaphys. 16 (4), 251261.CrossRefGoogle Scholar
Malashetty, M.S., Swamy, M. & Heera, R. 2008 Double diffusive convection in a porous layer using a thermal non-equilibrium model. Intl J. Therm. Sci. 47 (9), 11311147.CrossRefGoogle Scholar
Malashetty, M.S., Swamy, M. & Kulkarni, S. 2007 Thermal convection in a rotating porous layer using a thermal nonequilibrium model. Phys. Fluids 19 (5), 054102.CrossRefGoogle Scholar
Nield, D.A. & Bejan, A. 2013 Convection in Porous Media. Springer.CrossRefGoogle Scholar
Postelnicu, A. 2008 The onset of a Darcy–Brinkman convection using a thermal nonequilibrium model. Part II. Intl J. Therm. Sci. 47 (12), 15871594.CrossRefGoogle Scholar
Postelnicu, A. & Rees, D.A.S. 2003 The onset of Darcy–Brinkman convection in a porous layer using a thermal nonequlibrium model-part I: stress-free boundaries. Intl J. Energy Res. 27 (10), 961973.CrossRefGoogle Scholar
Qin, Y. & Kaloni, P.N. 1995 Nonlinear stability problem of a rotating porous layer. Q. Appl. Maths 53 (1), 129142.CrossRefGoogle Scholar
Rees, D.A.S. & Pop, I. 2005 Local thermal non-equilibrium in porous medium convection. In Transport Phenomena in Porous Media III (ed. D.B. Ingham & I. Pop), pp. 147–173. Elsevier.CrossRefGoogle Scholar
Sharma, R.C. 1972 Finite Larmor radius and Hall effects on thermal instability of a rotating plasma. Phys. Fluids 15 (10), 18221826.CrossRefGoogle Scholar
Sharma, R.C. & Sharma, K.C. 1978 Thermal instability of a partially ionized plasma. Austral. J. Phys. 31 (2), 181188.CrossRefGoogle Scholar
Sharma, R.C. & Sharma, Y.D. 1989 Taylor instability of partially-ionized plasma in porous medium in the presence of variable magnetic field. Astrophys. Space Sci. 155 (2), 295300.CrossRefGoogle Scholar
Sharma, R.C. & Sunil, 1995 Thermal instability of a compressible finite Larmor radius, Hall plasma in porous medium. Phys. Plasmas 2 (6), 18861892.CrossRefGoogle Scholar
Sharma, R.C. & Sunil, 1996 Thermal instability of a compressible finite-Larmor-radius Hall plasma in a porous medium. J. Plasma Phys. 55 (1), 3545.CrossRefGoogle Scholar
Sharma, S., Sunil, & Sharma, P. 2024 Stability analysis of thermosolutal convection in a rotating Navier–Stokes–Voigt fluid. Z. Naturforsch. A 79 (7), 689702.CrossRefGoogle Scholar
Shivakumara, I.S., Lee, J., Mamatha, A.L. & Ravisha, M. 2011 Boundary and thermal non-equilibrium effects on convective instability in an anisotropic porous layer. J. Mech. Sci. Technol. 25 (4), 911921.CrossRefGoogle Scholar
Soler, R. & Ballester, J.L. 2022 Theory of fluid instabilities in partially ionized plasmas: an overview. Front. Astron. Space Sci. 9, 789083.CrossRefGoogle Scholar
Spiegel, E.A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442447.CrossRefGoogle Scholar
Straughan, B. 2004 The Energy Method, Stability, and Nonlinear Convection. Springer.CrossRefGoogle Scholar
Straughan, B. 2006 Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. A 462 (2066), 409418.Google Scholar
Straughan, B. 2008 Stability and Wave Motion in Porous Media. Springer.Google Scholar
Sunil, , Sharma, P. & Mahajan, A. 2010 Nonlinear ferroconvection in a porous layer using a thermal nonequilibrium model. Spec. Top. Rev. Porous Media: Intl J. 1 (2), 105121.CrossRefGoogle Scholar
Thakur, A., Kumar, S. & Devi, R. 2024 The effect of rotation on ferroconvection in the presence of couple stress forces in porous medium: a nonlinear analysis. Eur. Phys. J. Plus 139 (3), 236.CrossRefGoogle Scholar
Yadav, D., Bhargava, R. & Agarwal, G.S. 2013 Thermal instability in a nanofluid layer with a vertical magnetic field. J. Eng. Math. 80 (1), 147164.CrossRefGoogle Scholar
Yadav, D. & Lee, J. 2015 The effect of local thermal non-equilibrium on the onset of Brinkman convection in a nanofluid saturated rotating porous layer. J. Nanofluids 4 (3), 335342.CrossRefGoogle Scholar