Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T05:19:17.219Z Has data issue: false hasContentIssue false

Stimulated emission from a laser-wiggled electron beam travelling in an electrostatic wave

Published online by Cambridge University Press:  13 March 2009

S. H. Kim
Affiliation:
Department of Physics, University of Texas at Arlington, P.O. Box 19059, Arlington, Texas 76019, U.S.A.

Abstract

An axial emission process by a relativistic electron beam travelling in a laser beam and an electrostatic wave propagating in the direction antiparallel to the electron-beam direction (‘electric wiggler’), which is different from free-electron two-quantum Stark (FETQS) emission, is identified, and the laser gain through this process is investigated using relativistic quantum kinetics. The transverse a.c. source current for this axial emission is produced by the laser field acting as a classical electromagnetic wave to wiggle the electron in the transverse direction. From the viewpoint of quantum kinematics, this radiation-wiggled one-quantum induced Stark (RWOQIS) emission is exactly the same as FETQS emission in which the equivalent transverse source current needed for the axial emission is due to the intrinsic electron spin angular momentum. However, these two emissions differ in dynamics, since the former is an one-quantum process while the latter is a two-quantum process. It is found that the laser gain by RWOQIS emission increases with the laser intensity when ¦eA0/mc2¦ ≪ 1 and decreases with the inverse of the square of the laser intensity when ¦eA0/mc2¦ ≫ 1, where A0 is the potential amplitude of the laser wave and mc2 is the electron rest energy. This newly found emission is an inherently stimulated one, and does not have a corresponding spontaneous emission.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baranger, M. & Mozer, B. 1961 Phys. Rev. 123, 25.CrossRefGoogle Scholar
Elias, L. R., Fairbank, M., Madey, J. M. J., Schwettmann, H. A. & Smith, T. I. 1976 Phys. Rev. Lett. 36, 717.CrossRefGoogle Scholar
Feynman, R. P. 1962 Quantum Electrodynamics, p. 4. Benjamin.Google Scholar
Kim, S. H. 1986 J. Plasma Phys. 36, 195 [Corrigendum 41, 577 (1989)].CrossRefGoogle Scholar
Kim, S. H. 1988 Physica A 148, 575.CrossRefGoogle Scholar
Kim, S. H. 1989 Phys. Lett. 135 A, 39.CrossRefGoogle Scholar
Kim, S. H. 1990 Free-Electron Lasers and Applications (ed. Prosnitz, D.). p. 66. SPIE Proceedings, vol. 1227, SPIE-The International Society for Optical Engineering.CrossRefGoogle Scholar
Kim, S. H. 1991 a Nuovo Cim. 106 B, 325.CrossRefGoogle Scholar
Kim, S. H. 1991 b Intense Microwave and Particle Beams (ed. Brandt, H. E.), p. 620. SPIE Proceedings, vol. 1407, SPIE-The International Society for Optical Engineering.CrossRefGoogle Scholar
Kim, S. H. 1991 c Nuovo. Cim. 106 B. 1311.CrossRefGoogle Scholar
Kim, S. H. 1992 a J. Phys. Soc. Japan 61, 131.Google Scholar
Kim, S. H. 1992 b J. Plasma Phys. 47, 197.CrossRefGoogle Scholar
Kim, S. H. 1992 c J. Plasma Phys. 47, 219.CrossRefGoogle Scholar
Kim, S. H. 1992 d Nuovo Cim. 107 B, 605.CrossRefGoogle Scholar
Kim, S. H. 1992 e J. Plasma Phys. 47, 505.CrossRefGoogle Scholar
Kim, S. H. 1992 f J. Korean Phys. Soc. (in press).Google Scholar
Kim, S. H. 1992 g J. Plasma Phys. (submitted).Google Scholar
Kim, S. H. 1992 h J. Korean Phys. Soc. 25, 206.Google Scholar
Kim, S. H. 1992 i J. Phys. Soc. Japan (submitted).Google Scholar
Kim, S. H. & Chung, H. Y. 1978 J. Appl. Phys. 49, 5081.CrossRefGoogle Scholar
Kim, S. H. & Wilhelm, H. E. 1973 J. Appl. Phys. 44, 802.CrossRefGoogle Scholar
Madey, J. M. J. 1971 J. Appl. Phys. 42. 1906.CrossRefGoogle Scholar
Nambu, M. 1983 Laser and Particle Beams 1, 427.CrossRefGoogle Scholar
Nambu, M., Sarma, S. N. & Bujarbarua, S. A. 1990 Phys. Fluids B 2, 302.CrossRefGoogle Scholar
Sakurai, J. J. 1967 Advanced Quantum Mechanics. Addison-Wesley.Google Scholar
Sarma, S. N., Sarma, K. K. & Nambu, M. 1991 a J. Plasma Phys. 46, 331.CrossRefGoogle Scholar
Sarma, K. K., Sarma, S. N., Nambu, M. & Hada, T. 1991 b Phys. Rev. A 43, 5555.CrossRefGoogle Scholar
Seely, J. F. 1973 Ph.D. thesis. Department of Physics, University of Tennessee.Google Scholar
Smith, S. J. & Purcell, E. M. 1953 Phys. Rev. 92, 1069.CrossRefGoogle Scholar
Tsytovtch, V. N. & Wilhelmsson, H. 1983 Comments Plasma Phys. Contr. Fusion 7, 181.Google Scholar
Volkov, D. M. 1935 Z. Phys. 94, 250.Google Scholar