Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T03:51:46.969Z Has data issue: false hasContentIssue false

Sub-grid-scale effects in magnetised plasma turbulence

Published online by Cambridge University Press:  19 March 2021

Bogdan Teaca*
Affiliation:
Coventry University, CoventryCV1 5FB, United Kingdom University of Craiova, 13 A.I. Cuza Street, 200585Craiova, Romania
Evgeny A. Gorbunov
Affiliation:
Coventry University, CoventryCV1 5FB, United Kingdom
Daniel Told
Affiliation:
Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748Garching, Germany
Alejandro Bañón Navarro
Affiliation:
Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748Garching, Germany
Frank Jenko
Affiliation:
Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748Garching, Germany
*
Email address for correspondence: bogdan.teaca@coventry.ac.uk

Abstract

In the present paper, we use a coarse-graining approach to investigate the nonlinear redistribution of free energy in both position and scale space for weakly collisional magnetised plasma turbulence. For this purpose, we use high-resolution numerical simulations of gyrokinetic (GK) turbulence that span the proton–electron range of scales, in a straight magnetic guide field geometry. Accounting for the averaged effect of the particles’ fast gyro-motion on the slow plasma fluctuations, the GK approximation captures the dominant energy redistribution mechanisms in strongly magnetised plasma turbulence. Here, the GK system is coarse grained with respect to a cut-off scale, separating in real space the contributions to the nonlinear interactions from the coarse-grid scales and the sub-grid scales (SGS). We concentrate on the analysis of nonlinear SGS effects. Not only does this allow us to investigate the flux of free energy across the scales, but also to now analyse its spatial density. We find that the net value of scale flux is an order of magnitude smaller than both the positive and negative flux density contributions. The dependence of the results on the filter type is also analysed. Moreover, we investigate the advection of energy in position space. This rather novel approach for GK turbulence can help in the development of SGS models that account for advective unstable structures for space and fusion plasmas, and with the analysis of the turbulent transport saturation.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brizard, A. J. & Hahm, T. S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421.CrossRefGoogle Scholar
Burton, G. C. & Dahm, W. J. A. 2005 Multifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluation. Phys. Fluids 17 (7), 075112.CrossRefGoogle Scholar
Cerri, S. S., Navarro, A. B., Jenko, F. & Told, D. 2014 Collision-dependent power law scalings in two dimensional gyrokinetic turbulence. Phys. Plasmas 21, 082305.CrossRefGoogle Scholar
Chen, C. H. K., Boldyrev, S., Xia, Q. & Perez, J. C. 2013 Nature of subproton scale turbulence in the solar wind. Phys. Rev. Lett. 110, 225002.CrossRefGoogle ScholarPubMed
Eyink, G. L. 2018 Cascades and dissipative anomalies in nearly collisionless plasma turbulence. Phys. Rev. X 8 (4), 041020.Google Scholar
Eyink, G. L. & Sreenivasan, K. R. 2006 Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78, 87.CrossRefGoogle Scholar
Fasoli, A., Brunner, S., Cooper, W. A., Graves, J. P., Ricci, P., Sauter, O. & Villard, L. 2016 Computational challenges in magnetic-confinement fusion physics. Nat. Phys. 12, 411423.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Görler, T. & Jenko, F. 2008 a Multiscale features of density and frequency spectra from nonlinear gyrokinetics. Phys. Plasmas 15, 2508.CrossRefGoogle Scholar
Görler, T. & Jenko, F. 2008 b Scale separation between electron and ion thermal transport. Phys. Rev. Lett. 100, 185002.CrossRefGoogle ScholarPubMed
Grošelj, D., Chen, C. H. K., Mallet, A., Samtaney, R., Schneider, K. & Jenko, F. 2019 Kinetic turbulence in astrophysical plasmas: waves and/or structures? Phys. Rev. X 9 (3), 031037.Google Scholar
Hammett, G. W., Dorland, W. & Perkins, F. W. 1992 Fluid models of phase mixing, landau damping, and nonlinear gyrokinetic dynamics. Phys. Fluids B 4, 2052.CrossRefGoogle Scholar
Hatch, D. R., Jenko, F., Bratanov, V. & Navarro, A. B. 2014 Phase space scales of free energy dissipation in gradient-driven gyrokinetic turbulence. J. Plasma Phys. 80, 531.CrossRefGoogle Scholar
Helander, P., Bird, T., Jenko, F., Kleiber, R., Plunk, G. G., Proll, J. H. E., Riemann, J. & Xanthopoulos, P. 2015 Advances in stellarator gyrokinetics. Nucl. Fusion 55, 053030.CrossRefGoogle Scholar
Howard, N. T., Holland, C., White, A. E., Greenwald, M., Candy, J. & Creely, A. J. 2016 Multi-scale gyrokinetic simulations: comparison with experiment and implications for predicting turbulence and transport. Phys. Plasmas 23, 056109.CrossRefGoogle Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590.CrossRefGoogle Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2008 a A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113 (A5), A05103.CrossRefGoogle Scholar
Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A. & Tatsuno, T. 2008 b Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys. Rev. Lett. 100, 65004.CrossRefGoogle ScholarPubMed
Howes, G. G., Tenbarge, J. M., Dorland, W., Quataert, E., Schekochihin, A. A., Numata, R. & Tatsuno, T. 2011 Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107, 35004.CrossRefGoogle ScholarPubMed
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient driven turbulence. Phys. Plasmas 7, 1904.CrossRefGoogle Scholar
Kanekar, A., Schekochihin, A. A., Dorland, W. & Loureiro, N. F. 2015 Fluctuation-dissipation relations for a plasma-kinetic Langevin equation. J. Plasma Phys. 81, 305810104.CrossRefGoogle Scholar
Kawazura, Y., Barnes, M. & Schekochihin, A. A. 2019 Thermal disequilibration of ions and electrons by collisionless plasma turbulence. Proc. Natl Acad. Sci. 116, 771.CrossRefGoogle ScholarPubMed
Krommes, J. A. 2012 The gyrokinetic description of microturbulence in magnetized plasmas. Annu. Rev. Fluid Mech. 44, 175.CrossRefGoogle Scholar
Maeyama, S., Idomura, Y., Watanabe, T.-H., Nakata, M., Yagi, M., Miyato, N., Ishizawa, A. & Nunami, M. 2015 Cross-scale interactions between electron and ion scale turbulence in a tokamak plasma. Phys. Rev. Lett. 114 (25), 255002.CrossRefGoogle Scholar
Maeyama, S. & Watanabe, T.-H. 2020 Extracting and modeling the effects of small-scale fluctuations on large-scale fluctuations by Mori–Zwanzig projection operator method. J. Phys. Soc. Japan 89, 024401.CrossRefGoogle Scholar
Mandell, N. R., Dorland, W. & Landreman, M. 2018 Laguerre–Hermite pseudo-spectral velocity formulation of gyrokinetics. J. Plasma Phys. 84 (01), 905840108.CrossRefGoogle Scholar
Mcmillan, B. F., Pringle, C. C. T. & Teaca, B. 2018 Simple advecting structures and the edge of chaos in subcritical tokamak plasmas. J. Plasma Phys. 84 (6), 905840611.CrossRefGoogle Scholar
Meyrand, R., Kanekar, A., Dorland, W. & Schekochihin, A. A. 2019 Fluidization of collisionless plasma turbulence. Proc. Natl Acad. Sci. 116, 1185.CrossRefGoogle ScholarPubMed
Morel, P., Navarro, A. B., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T. & Jenko, F. 2011 Gyrokinetic large eddy simulations. Phys. Plasmas 18, 2301.CrossRefGoogle Scholar
Morel, P., Navarro, A. B., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T. & Jenko, F. 2012 Dynamic procedure for filtered gyrokinetic simulations. Phys. Plasmas 19, 2311.CrossRefGoogle Scholar
Nakata, M., Watanabe, T.-H. & Sugama, H. 2012 Nonlinear entropy transfer via zonal flows in gyrokinetic plasma turbulence. Phys. Plasmas 19, 2303.CrossRefGoogle Scholar
Navarro, A. B., Morel, P., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T. & Jenko, F. 2011 a Free energy balance in gyrokinetic turbulence. Phys. Plasmas 18, 2303.Google Scholar
Navarro, A. B., Morel, P., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T. & Jenko, F. 2011 b Free energy cascade in gyrokinetic turbulence. Phys. Rev. Lett. 106, 55001.CrossRefGoogle Scholar
Navarro, A. B., Teaca, B., Jenko, F., Hammett, G. W. & Happel, T. 2014 Applications of large eddy simulation methods to gyrokinetic turbulence. Phys. Plasmas 21, 032304.CrossRefGoogle Scholar
Navarro, A. B., Teaca, B., Told, D., Groselj, D., Crandall, P. & Jenko, F. 2016 Structure of plasma heating in gyrokinetic alfvénic turbulence. Phys. Rev. Lett. 117 (24), 245101.CrossRefGoogle ScholarPubMed
Plunk, G. G., Cowley, S. C., Schekochihin, A. A. & Tatsuno, T. 2010 Two-dimensional gyrokinetic turbulence. J. Fluid Mech. 664, 407.CrossRefGoogle Scholar
Plunk, G. G. & Tatsuno, T. 2011 Energy transfer and dual cascade in kinetic magnetized plasma turbulence. Phys. Rev. Lett. 106, 165003.CrossRefGoogle ScholarPubMed
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Plunk, G. G., Quataert, E. & Tatsuno, T. 2008 Gyrokinetic turbulence: a nonlinear route to dissipation through phase space. Plasma Phys. Control. Fusion 50, 4024.CrossRefGoogle Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310.CrossRefGoogle Scholar
Schekochihin, A. A., Parker, J. T., Highcock, E. G., Dellar, P. J., Dorland, W. & Hammett, G. W. 2016 Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. J. Plasma Phys. 82 (02), 905820212.CrossRefGoogle Scholar
Tatsuno, T., Barnes, M., Cowley, S., Dorland, W., Howes, G., Numata, R., Plunk, G. & Schekochihin, A. 2010 Gyrokinetic simulation of entropy cascade in two-dimensional electrostatic turbulence. J. Plasma Fusion Res. 9, 509.Google Scholar
Tatsuno, T., Dorland, W., Schekochihin, A. A., Plunk, G. G., Barnes, M., Cowley, S. C. & Howes, G. G. 2009 Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence. Phys. Rev. Lett. 103, 15003.CrossRefGoogle ScholarPubMed
Tatsuno, T., Plunk, G. G., Barnes, M., Dorland, W., Howes, G. G. & Numata, R. 2012 Freely decaying turbulence in two-dimensional electrostatic gyrokinetics. Phys. Plasmas 19, 2305.Google Scholar
Teaca, B., Jenko, F. & Told, D. 2017 Gyrokinetic turbulence: between idealized estimates and a detailed analysis of nonlinear energy transfers. New J. Phys. 19, 045001.CrossRefGoogle Scholar
Teaca, B., Navarro, A. B. & Jenko, F. 2014 The energetic coupling of scales in gyrokinetic plasma turbulence. Phys. Plasmas 21, 072308.CrossRefGoogle Scholar
Teaca, B., Navarro, A. B., Jenko, F., Brunner, S. & Villard, L. 2012 Locality and universality in gyrokinetic turbulence. Phys. Rev. Lett. 109, 235003.CrossRefGoogle ScholarPubMed
Teaca, B., Navarro, A. B., Told, D., Görler, T., Plunk, G., Hatch, D. R. & Jenko, F. 2019 A look at phase space intermittency in magnetized plasma turbulence. Astrophys. J. 886, 65.CrossRefGoogle Scholar
Tenbarge, J. M. & Howes, G. G. 2013 Current sheets and collisionless damping in kinetic plasma turbulence. Astrophys. J. Lett. 771, L27.CrossRefGoogle Scholar
TenBarge, J., Howes, G., Dorland, W. & Hammett, G. 2014 An oscillating Langevin antenna for driving plasma turbulence simulations. Comput. Phys. Commun. 185 (2), 578589.CrossRefGoogle Scholar
Theiler, C., Furno, I., Ricci, P., Fasoli, A., Labit, B., Müller, S. H. & Plyushchev, G. 2009 Cross-field motion of plasma blobs in an open magnetic field line configuration. Phys. Rev. Lett. 103, 65001.CrossRefGoogle Scholar
Told, D., Cookmeyer, J., Muller, F., Astfalk, P. & Jenko, F. 2016 Comparative study of gyrokinetic, hybrid-kinetic and fully kinetic wave physics for space plasmas. New J. Phys. 18 (6), 113.CrossRefGoogle Scholar
Told, D., Jenko, F., Tenbarge, J., Howes, G. & Hammett, G. 2015 Multiscale nature of the dissipation range in gyrokinetic simulations of alfvénic turbulence. Phys. Rev. Lett. 115 (2), 025003.CrossRefGoogle ScholarPubMed
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203240.CrossRefGoogle Scholar
Zocco, A. & Schekochihin, A. A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18, 102309.CrossRefGoogle Scholar