Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T04:41:29.320Z Has data issue: false hasContentIssue false

Super-ion-beam accelerator for the ignition of thermonuclear reactions

Published online by Cambridge University Press:  13 March 2009

F. Winterberg
Affiliation:
Desert Research Institute, University of Nevada System, Reno, Nevada 89507

Abstract

A pulsed, multi-stage, high-voltage accelerator is proposed which should be capable of producing intense ion beams of many million amperes and many million volts. Super ion beams produced by this type of accelerator can exceed the limiting Aifvén current for light ions, typically 107 A, at which beam pinching occurs. The beam pinching of these super-beams permits them to be precisely focused onto a thermonuclear target. With such an accelerator it seems to be possible to reach a beam voltage of 108 V with a beam current of 107 A. The resulting beam power of 1015 W should be more than sufficient to ignite a DT thermonuclear microexplosion. By the formation of a stable ion beam superpinch within a thermonuclear target, such a large beam power in conjunction with the strong self-magnetic field of the beam may even lead to the ignition of the DD and perhaps HB11 thermonuclear reactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brueckner, K. A. 1975 Proceedings of the International Topical Conference on Electron Beam Research & Technology, Albuquerque, New Mexico, vol. 1, pp. 376 ff.Google Scholar
Christofilos, N. 1958 Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, United Nations, Geneva, vol. 32, p. 279.Google Scholar
Clauser, M. J. & Sweeney, M. A. 1975 Proceedings of the International Conference on Electron Beam Research & Technology, Albuquerque, New Mexico, vol. 1, p. 135 ff.Google Scholar
Fleischmann, H. H. 1975 Ann. N.Y. Acad. Sci. 251, 472.CrossRefGoogle Scholar
Gryzinski, M. 1958 Phys. Rev. 111, 900.CrossRefGoogle Scholar
Humphries, S. 1978 J. Appl. Phys. 49, 501.CrossRefGoogle Scholar
Lovelace, R. V. 1976 Phys. Fluids, 19, 723.CrossRefGoogle Scholar
Poukey, J. W. 1975 Proceedings of the International Topical Conference on Electron Beam Research & Technology, Albuquerque, New Mexico, vol. 1, pp. 247 ff.Google Scholar
Poukey, J. W., Freeman, J. R., Clauser, M. J. & Yonas, G. 1975 Phys. Rev. Lett. 35, 1806.CrossRefGoogle Scholar
Poukey, J. W. & Toepfer, A. J. 1974 Phys. Fluids, 17, 1582.CrossRefGoogle Scholar
Sudan, R. N. & Ott, E. 1974 Phys. Rev. Lett. 33, 355.CrossRefGoogle Scholar
Winterberg, F. 1968 Phys. Rev. 174, 212.CrossRefGoogle Scholar
Winterberg, F. 1971 Physics of High Energy Density, pp. 370 ff. Academic.Google Scholar
Winterberg, F. 1973 Nature, 246, 299.CrossRefGoogle Scholar
Winterberg, F. 1974 Il Nuovo Oimento, 20 B, 173.CrossRefGoogle Scholar
Winterberg, F. 1976 J. Plasma Phys. 16, 81.CrossRefGoogle Scholar
Winterberg, F. 1977 a Z. f. Physik, 280, 359.CrossRefGoogle Scholar
Winterberg, F. 1977 b Z. f. Physik, 282, 3.CrossRefGoogle Scholar
Yonas, G.et al. 1977 Phys. Rev. Lett. 39, 92.Google Scholar
Yonas, G. 1978 Scientific American, 239, 50.CrossRefGoogle Scholar