Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T23:12:23.015Z Has data issue: false hasContentIssue false

A three-dimensional thermal study of a mercury discharge lamp with double envelope for different orientations

Published online by Cambridge University Press:  08 December 2014

Mohamed Bechir Ben Hamida*
Affiliation:
Unité d'Etude des Milieux Ionisés et Réactifs, IPEIM, 5019 route de Kairouan Monastir, Tunisia
Kamel Charrada
Affiliation:
Unité d'Etude des Milieux Ionisés et Réactifs, IPEIM, 5019 route de Kairouan Monastir, Tunisia
*
Email address for correspondence: benhamida_mbechir@yahoo.fr

Abstract

This paper is devoted to study the dynamics of a discharge lamp in different position. As an example of application, we chose the mercury lamp. For this, we realized a three-dimensional model, steady state. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in different positions. Indeed, the pressure and the orientation of the lamp are modified. The effect of convective transport and the accumulation of mercury behind the electrodes are studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beks, L. M., Haverlag, M. and van der Mullen, J. J. A. M. 2008 A model for additive transport in metal halide lamps containing mercury and dysprosium tri-iodide. J. Phys. D: Appl. Phys. 41 (12), 125209-1–125209-9, doi: 10.1088/0022-3727/41/12/125209.CrossRefGoogle Scholar
Ben Hamida, M. B., Helali, H., Araoud, Z. and Charrada, K. 2011 Contrast between the vertical and horizontal mercury discharge lamps. Phys. Plasmas 18, 063506-1–063506-7.Google Scholar
Chang, P. Y. and Shyy, W. 1992 A study of three-dimensional natural convection in high-pressure mercury lamps–-III. Arc centering by magnetic field. Int. J. Heat Mass Transfer 35 (8), 18571864.CrossRefGoogle Scholar
Chang, P. Y., Shyy, W. and Dakin, J. T. 1990 A study of three-dimensional natural convection in high-pressure mercury lamps–-I. Parametric variations with horizontal mounting. Int. J. Heat Mass Transfer 33 (3), 483493.Google Scholar
Charrada, K. and Zissis, G. 2000 Spatio-temporal study of the deviations from thermal equilibrium in a high-pressure mercury plasma working under an ac power supply. J. Phys. D: Appl. Phys. 33 (8), 968976.Google Scholar
Charrada, K., Zissis, G. and Aubes, M. 1996a Two-temperature, two dimensional fluid modelling of mercury plasma in high-pressure lamps. J. Phys. D: Appl. Phys. 29 (9), 24322438.Google Scholar
Charrada, K., Zissis, G. and Stambouli, M. 1996b A study of the convective flow as a function of external parameters in high-pressure mercury lamps. J. Phys. D: Appl. Phys. 29 (3), 753760.CrossRefGoogle Scholar
Chase, M. W. 1986 JANAF Thermochemical Tables, New York: American Chemical Society, p. 1320.Google Scholar
Elenbaas, W. 1951 High Pressure Mercury Vapor Discharge. Amsterdam: North Holland.Google Scholar
Fischer, E. 1987 Modeling of low-power high-pressure gas discharge lamps. Philips J. Res. 42 (1), 5885.Google Scholar
Flesch, P. and Neiger, M. 1999 Modeling of high-pressure discharge lamps including electrodes. IEEE Trans. Plasma Sci. 27 (1), 1819.Google Scholar
Fromm, D. C. 1979 In: Proc. of the 2nd Int. Symp. on Incoherent Light Sources, Pays Bas, Enschede.Google Scholar
Galvez, M. 2004 3-D LTE modeling of HID lamps with electrode plasma interaction. In: Proc. Light Sour., Vol. 10. Toulouse, France, pp. 219220.Google Scholar
Hirschfelder, J. O. 1954 Molecular Theory of Gases and Liquids. New York: Wiley.Google Scholar
Paul, K. C., Takemura, T., Hiramoto, T., Yoshioka, M. and Igarashi, T. 2006 Three-dimensional modeling of a direct current operated Hg-Ar lamp. IEEE Trans. Plasma Sci. 34 (2), 254262.Google Scholar
Shyy, W. and Chang, P. Y. 1990a Effects of convection and electric field on thermofluid transport in horizontal high-pressure mercury arcs. J. Appl. Phys. 67 (4), 17121719.Google Scholar
Shyy, W. and Chang, P. Y. 1990b A study of three-dimensional natural convection in high-pressure mercury lamps–-II. Wall temperature profiles and inclination angles. Int. J. Heat Mass Transfer 33 (3), 495506.CrossRefGoogle Scholar
Stambouli, M., Charrada, K. and Damelincourt, J. J. 1995 Thermalization of the high pressure mercury lamp positive column during the warm-up phase. IEEE Trans. Plasma Sci. 23 (2), 138144.Google Scholar
Wendelstorf, J. 1999 Two-temperature, two-dimensional modeling of cathode plasma interaction in electric arcs. In: Proc. ICPIG XXIV Int. Conf. Phenom. Ionized Gases, Warsaw, Poland, July 11–16, 1999, Vol. 2, pp. 227228.Google Scholar
Zollweg, R. J. 1978 Convection in vertical high-pressure mercury arcs. J. Appl. Phys. 49 (3), 10771091.Google Scholar
Zollweg, R. J., Lowke, J. J. and Liebermann, R. W. 1975 Arc constriction in lamps containing mercury and iodine. J. Appl. Phys. 46 (9), 38283838.Google Scholar