Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T12:10:48.275Z Has data issue: false hasContentIssue false

Transformation approximation method for an electromagnetic ion-cyclotron instability caused by proton temperature anisotropy

Published online by Cambridge University Press:  13 March 2009

Y. Higuchi
Affiliation:
Department of Electrical Engineering, Yamagata University, Yonezawa, Japan

Abstract

The transformation approximation for the plasma dispersion fonction is applied to an electromagnetic ion-cyclotron instability caused by proton temperature anisotropy. The transformation method gives an improved dispersion relation and instability growth rate compared with the asymptotic expansion for the plasma dispersion fonction. It is found that the maximum growth rate is slightly suppressed when the transformation approximation for the plasma dispersion function is used. However, it is shown that the transformation approximation method yields an unreliable estimate of the growth rate for values greater than a critical thermal anisotropy. Cold-heavy-ion effects on the ion-cyclotron instability are also investigated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clemmow, P. C. & Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas, p. 254. Addison-Wesley.Google Scholar
Cornwall, J. M. 1965 J. Geophys. Res. 70, 61.CrossRefGoogle Scholar
Cornwall, J. M. & Schulz, M. 1971 J. Geophys. Res. 76, 7791.Google Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Fried, B. D., Hedrick, C. L. & McCune, J. 1968 Phys. Fluids, 11, 249.CrossRefGoogle Scholar
Gendrin, R. 1983 High Latitude Space Plasma Physics, p. 415. Plenum.CrossRefGoogle Scholar
Gendrin, R., Ashour-Abdalla, M., Omura, Y. & Quest, K. 1984 J. Geophys. Res. 89, 9119.Google Scholar
Gendrin, R. & Roux, A. 1980 J. Geophys. Res. 85, 4577.CrossRefGoogle Scholar
Gomberoff, L. & Molina, M. 1985 J. Geophys. Res. 90, 1776.Google Scholar
Gomberoff, L. & Neira, R. 1983 J. Geophys. Res. 88, 2170.CrossRefGoogle Scholar
Higuchi, Y. 1981 Relation Between Laboratory and Space Plasmas, p. 261. Reidel.CrossRefGoogle Scholar
Higuchi, Y. 1985 J. Geomag. Geoelect. 37, 999.CrossRefGoogle Scholar
Higuchi, Y. 1986 Bull. Yamagata Univ. (Engng), 19, 67.Google Scholar
Higuchi, Y. & Jacobs, J. A. 1970 J. Geophys. Res. 75, 7105.CrossRefGoogle Scholar
Higuchi, Y., Kisabeth, J. L. & Jacobs, J. A. 1972 Planet. Space Sci. 20, 707.Google Scholar
Hruška, A. 1966 J. Geophys. Res. 71, 1377.CrossRefGoogle Scholar
Jacks, B. R. 1966 Earth Planet. Sci. Lett. 1, 467.CrossRefGoogle Scholar
Jacobs, J. A. & Higuchi, Y. 1969 Planet. Space Sci. 17, 2009.CrossRefGoogle Scholar
Kennel, C. F. & Petschek, H. E. 1966 J. Geophys. Res. 71, 1.CrossRefGoogle Scholar
Mark, E. 1974 J. Geophys. Res. 79, 3218.Google Scholar
Martin, P. & González, M. A. 1979 Phys. Fluids, 22, 1413.CrossRefGoogle Scholar
Mauk, B. H. & McPherron, R. L. 1980 Phys. Fluids, 23, 2111.Google Scholar
Perraut, S., Gendrin, R. & Roux, A. 1976 J. Atmos. Terr. Phys. 38, 1191.CrossRefGoogle Scholar
Robinson, P. A. & Newman, D. L. 1988 J. Plasma Phys. 40, 553.CrossRefGoogle Scholar
Rönnmark, K. 1983 Plasma Phys. 25, 699.CrossRefGoogle Scholar
Roux, A., Perraut, S., Rauch, J. L., De Villedary, C., Kremser, G., Korth, A. & Young, D. J. 1982 J. Geophys. Res. 87, 8174.CrossRefGoogle Scholar
Sato, M. 1984 J. Plasma Phys. 31, 325.Google Scholar
Sato, M. 1985 J. Plasma Phys. 34, 417.CrossRefGoogle Scholar
Scharer, J. E. & Trivelpiece, A. W. 1967 Phys. Fluids, 10, 591.Google Scholar
Shanks, D. 1955 J. Maths & Phys. 34, 1.Google Scholar
Watanabe, T. 1966 Can. J. Phys. 44, 815.CrossRefGoogle Scholar