Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T05:06:46.884Z Has data issue: false hasContentIssue false

Twisted waves and instabilities in a permeating dusty plasma

Published online by Cambridge University Press:  13 March 2018

S. Bukhari*
Affiliation:
Department of Physics, The University of Azad Jummu and Kashmir, Muzaffarabad 13100, Azad Kashmir National Center for Physics at Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000, Pakistan
S. Ali
Affiliation:
Department of Physics, The University of Azad Jummu and Kashmir, Muzaffarabad 13100, Azad Kashmir National Center for Physics at Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000, Pakistan Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
S. A. Khan
Affiliation:
National Center for Physics at Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000, Pakistan
J. T. Mendonca
Affiliation:
IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
*
Email address for correspondence: shujaht_physics@yahoo.com

Abstract

New features of the twisted dusty plasma modes and associated instabilities are investigated in permeating plasmas. Using the Vlasov–Poisson model equations, a generalized dispersion relation is obtained for a Maxwellian distributed plasma to analyse the dust-acoustic and dust-ion-acoustic waves with finite orbital angular momentum (OAM) states. Existence conditions for damping/growth rates are discussed and showed significant modifications in twisted dusty modes as compared to straight propagating dusty modes. Numerically, the instability growth rate, which depends on particle streaming and twist effects in the wave potential, is significantly modified due to the Laguerre–Gaussian profiles. Relevance of the study to wave excitations due to penetration of solar wind into cometary clouds or interstellar dusty plasmas is discussed.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, S., Bukhari, S. & Mendonca, J. T. 2016 Twisted Landau damping rates in multi-component dusty plasmas. Phys. Plasmas 23, 033703.CrossRefGoogle Scholar
Angelo, N. D. 1998 Current-driven electrostatic dust-cyclotron instability in a collisional plasma. Planet. Space Sci. 46, 1671.CrossRefGoogle Scholar
Arshad, K., Lazar, M., Mahmood, S., Rehman, A. & Poedts, S. 2017 Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas. Phys. Plasmas 24, 033701.CrossRefGoogle Scholar
Balsiger, H., Altwegg, K., Bhler, F., Geiss, J., Ghielmetti, A. G., Goldstein, B. E., Goldstein, R., Huntress, W. T., Lazarus, A. J., Meier, A. et al. 1986 Ion composition and dynamics at comet Halley. Nature 321, 330.CrossRefGoogle Scholar
Bukhari, S., Ali, S., Rafique, M. & Mendonca, J. T. 2017 Twisted electrostatic waves in a self-gravitating dusty plasma. Contrib. Plasma Phys. 57, 404.CrossRefGoogle Scholar
Festau, M. C., Keller, H. U. & Weaver, H. A. 2004 A Brief conceptual cistory of Cometary Science. In Comets II, University of Arizona Press.CrossRefGoogle Scholar
Gong, J., Liu, Z. & Du, J. 2012a Dust-acoustic waves and stability in the permeating dusty plasma. I. Maxwellian distribution. Phys. Plasmas 19, 043704.Google Scholar
Gong, J., Liu, Z. & Du, J. 2012b Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions. Phys. Plasmas 19, 083706.Google Scholar
Grard, R., Pedersen, A., Trotignon, J. G., Beghin, C., Mogilevsky, M., Mikhailov, Y., Molchanov, O. & Formisano, V. 1986 Nature 321, 290.CrossRefGoogle Scholar
Grewing, M., Praderie, F. & Reinhard, R. 1988 Exploration of Halley’s Comet. Springer.CrossRefGoogle Scholar
Khan, S. A., Rehman, A. & Mendonca, J. T. 2014 Kinetic study of ion-acoustic plasma vortices. Phys. Plasmas 21, 092109.CrossRefGoogle Scholar
Klimov, S., Savin, S., Aleksevich, Y., Avanesova, G., Balebanov, V., Balikhin, M., Galeev, A., Gribov, B., Nozdrachev, M., Smirnov, V. et al. 1986 Extremely-low-frequency plasma waves in the environment of comet Halley. Nature 321, 292.CrossRefGoogle Scholar
Klumov, B. A., Vladimirov, S. V. & Morfill, G. E. 2005 Features of dusty structures in the upper Earth’s atmosphere. JEPT Lett. 82, 632.Google Scholar
Klumov, B. A., Vladimirov, S. V. & Morfill, G. E. 2007 On the role of dust in the cometary plasma. JEPT Lett. 85, 478.Google Scholar
Lundin, R. & Marklund, G. 1995 Plasma vortex structures and the evolution of the solar system the legacy of Hannes Alfvén. Phys. Scr. T60, 198.CrossRefGoogle Scholar
Mendis, D. A. 1988 A postencounter view of Comets. Annu. Rev. Astron. Astrophys. 26, 11.CrossRefGoogle Scholar
Mendis, D. A. & Horanyi, M. 2013 Dusty plasma effects in Comet: expectations for ROSETTA. Rev. Geophys. 51, 53.CrossRefGoogle Scholar
Mendonca, J. T. 2012 Kinetic description of electron plasma waves with orbital angular momentum. Phys. Plasmas 19, 112113.CrossRefGoogle Scholar
Mendonca, J. T., Thide, B. & Then, H. 2009 Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital ongular oomentum. Phys. Rev. Lett. 102, 185005.CrossRefGoogle Scholar
Shahzad, K. & Ali, S. 2014 Finite orbital angular momentum states and Laguerre–Gaussian potential in two-temperature electron plasmas. Astrophys. Space Sci. 3, 353.Google Scholar
Shukla, P. K. 2012 Twisted dust acoustic waves in dusty plasmas. Phys. Plasmas 19, 083704.CrossRefGoogle Scholar
Sibeck, D. G. 1990 A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations. J. Geophys. Res. 95, 3755.Google Scholar
Stenzel, R. L. 2016 Whistler waves with angular momentum in space and laboratory plasmas and their counterparts in free space. Adv. Phys. X 1, 687.Google Scholar
Vranjes, J. 2011 Current-less solar wind driven dust acoustic instability in cometary plasma. Phys. Plasmas 18, 084501.CrossRefGoogle Scholar
Vranjes, J. & Poedts, S. 2014 Ion acoustic mode in permeating plasmas. J. Phys. Conf. Ser. 511, 012010.CrossRefGoogle Scholar
Wurz, P., Rubin, M., Altwegg, K., Balsiger, H., Berthelier, J. J., Bieler, A., Calmonte, U., Keyser, J. D., Fiethe, B., Fuselier, S. A. et al. 2015 Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko. Astron. Astrophys. 583, 22.CrossRefGoogle Scholar
Yaroshenko, V., Luhr, H. & Miloch, W. J. 2014 Dust charging in the Enceladus torus. J. Geophys. Res. Space Phys. 119, 221.CrossRefGoogle Scholar
Yaroshenko, V., Miloch, W. J. & Lühr, H. 2015 Particle-in-cell simulation of spacecraft/plasma interactions in the vicinity of Enceladus. Icarus 257, 1.CrossRefGoogle Scholar
Yaroshenko, V., Miloch, W. J., Vladimirov, S., Thomas, H. M. & Morfill, G. E. 2011 Modeling of Cassini’s charging at Saturn orbit insertion flyby. J. Geophys. Res. 116, 12218.Google Scholar
Yaroshenko, V., Ratynskaia, S., Olson, J., Brenning, N., Wahlund, J. E., Morooka, M., Kurth, W. S., Gurnett, D. A. & Morfill, G. E. 2009 Characteristics of charged dust inferred from the Cassini RPWS measurements in the vicinity of Enceladus. Planet. Space Sci. 57, 1807.CrossRefGoogle Scholar