Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T03:57:28.162Z Has data issue: false hasContentIssue false

Unified geometric and analytical treatment of magneto– gasdynamic shocks. Part 2. The shock polars

Published online by Cambridge University Press:  13 March 2009

Lee A. Bertram
Affiliation:
Department of Engineering Science and Mechanics, Iowa State University

Abstract

Previously derived shock solutions for a perfectly conducting perfect gas are used to compute shock polars for the one-dimensional unsteady and two- dimensional non-aligned shock representations. A new special-case shock solution, having a downstream particle velocity relative to the shock equal to upstream Alfvén velocity, is obtained, in addition to exhaustive analytical classification schemes for the shock polars. Eight classes of one-dimensional polars and twelve classes of two-dimensional polars are identified.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERNCES

Bazer, J. & Ericson, W. B. 1959 Astrophys. J. 129, 758.CrossRefGoogle Scholar
Bazer, J. & Ericson, W. B. 1962 Proc. Symp. on Electromagnetics and Fluid Dynamics of Gaseous Plasma, p. 387. New York: Polytechnic.Google Scholar
Bazer, J. & Fleishman, O. 1959 Phys. Fluids, 2, 366.CrossRefGoogle Scholar
Bertram, L. A. 1973a J. Fluid Mech. 58, 313.CrossRefGoogle Scholar
Bertram, L. A. 1973b J. Plasma Phys. 9, 325.CrossRefGoogle Scholar
Hoffmann, F. De & Teller, E. 1950 Phys. Rev. 80, 692.CrossRefGoogle Scholar
Friedrichs, K. O. & Kranzer, H. 1958 New York University Courant Inst. Math. Sci. Rep. NYO-6486-VIII.Google Scholar
Jeffrey, A. & Taniuti, T. 1964 Non-linear Wave Propagation with Applications to Physics and Magnetohydrodynamics, p. 223. Academic.Google Scholar
Kiselev, M. I. 1959 Soviet Phys. Dokl. 4, 517.Google Scholar
Kogan, M. N. 1959 Appl. Math. Mech. 23, 92.Google Scholar
Kogan, M. N. 1962 Acad. Nauk. Lat. SSR, p. 54. 1967 Elements of Magnetogasdynamics (ed. Kalikhman, L. E.), p. 142. Philadelphia: W. B. Saunders.Google Scholar
Lynn, Y. M. 1962 Phys. Fluids, 5, 626.Google Scholar
Lynn, Y. M. 1966 Phys. Fluids, 9, 314.CrossRefGoogle Scholar
Lynn, Y. M. 1971 J. Plasma Phys. 6, 283.CrossRefGoogle Scholar
McCune, J. E. & Resler, E. L. 1960 J. Aerospace Sci. 27, 493.Google Scholar
Morioka, S. & Spreiter, J. R. 1969 J. Plasma Phys. 3, 81.CrossRefGoogle Scholar
Sears, W. R. 1960 Rev. Mod. Phys. 32, 701.Google Scholar
Urashima, S. & Morioka, S. 1966 J. Phys. Soc. Japan, 21, 1431.Google Scholar
Weitzner, H. 1961 Phys. Fluids, 4, 1238.Google Scholar