Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T03:36:40.214Z Has data issue: false hasContentIssue false

Unified treatment of symmetric MHD equilibria

Published online by Cambridge University Press:  13 March 2009

Johann W. Edenstrasser
Affiliation:
Institute for Theoretical Physics, University of Innsbruck, Austria

Abstract

Under the assumption of a general symmetry (dependency on two space variables only), a generalized Grad–Shafranov equilibrium equation is derived and discussed. An elementary formulation of the boundary conditions is given and the existence of solutions is investigated. It emerges that from the equilibrium requirements almost no restrictions follow for the two arbitrary functions appearing in the equilibrium equation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Ames, W. 1965 Nonlinear Partial Differential Equations in Engineering. Academic.Google Scholar
Edenstrasser, J. W. 1978 J. Plasma Phys. 20, 503.CrossRefGoogle Scholar
Field, J. J. & Papaloizou, J. C. B. 1977 J. Plasma Phys. 18, 347.CrossRefGoogle Scholar
Gajewsky, R. 1972 Phys. F1uids, 15, 70.Google Scholar
Grad, H. 1967 Phys. Fluids, 10, 137.CrossRefGoogle Scholar
Greene, J. M., Johnson, J. L. & Weimer, K. E. 1971 Phys. Fluids, 14, 671.CrossRefGoogle Scholar
Herrnegger, F. & NÜhrenberg, J. 1975 Nucl. Fusion, 15, 1025.CrossRefGoogle Scholar
Infeld, E. 1972 Nuci. Fusion, 12, 165.CrossRefGoogle Scholar
Johanson, J. L., Oberman, R., Kulsrud, R. M. & Frieman, E. A. 1958 Phys. Fluids, 1, 281.CrossRefGoogle Scholar
Keller, J. B. & Antman, S. 1969 Bifurcation Theory and Nonlinear Eigenvalue Problems. Benjamin.Google Scholar
Lackner, K. 1976 Computer Phys. Comm. 12, 33.CrossRefGoogle Scholar
Lo Surdo, C. 1978 CNEN-Report 7.8/1p, Frascati.Google Scholar
Maschke, E. K. 1973 Plasma Phys. 15, 535.CrossRefGoogle Scholar
Meyer-Spasche, R. 1975 1PP-Report 6/141, Garching.Google Scholar
Protter, M. H. & Weinberger, H. F. 1967 Maximum Principles in Differential Equations. Prentice Hall.Google Scholar
Sattinger, D. H. 1972 Indiana University Maths. J. 21, 979.CrossRefGoogle Scholar
Sattlnger, D. H. 1973 Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics No. 309, p. 1822. Springer.CrossRefGoogle Scholar
SchlÜter, A. 1957 Z. Naturforschung, 12 a, 855.CrossRefGoogle Scholar
Shafranov, V. D. 1960 Soviet Phys. JETP, 37, 775.Google Scholar
Solov'ev, L. S. 1975 Reviews of Plasma Physics, vol 6 (ed. Leontovich, M. A.). Consultants Bureau.Google Scholar