Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T05:43:33.119Z Has data issue: false hasContentIssue false

The width of the solitary wave in dusty plasma

Published online by Cambridge University Press:  18 February 2016

Behrooz Malekolkalami*
Affiliation:
Department of Physics, University of Kurdistan, PO Box 66177-15175, Sanandaj, Iran
Amjad Alipanah
Affiliation:
Department of Physics, University of Kurdistan, PO Box 66177-15175, Sanandaj, Iran
*
Email address for correspondence: behruz.kord@gmail.com

Abstract

The Sagdeev potential method is employed to compute the width of the ion-acoustic solitary wave propagated in a dusty plasma containing three components (dust–ion–electron). The results indicate that the width is a continuous function over the allowable ranges of plasma parameters. The complexity of the resulting equations is an obstacle to the expression of the width function in an explicit form in terms of the parameters. Thus, computer algebra is needed to plot the graph of the width function versus the parameters, which helps us to understand the width changes as the parameters change.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikary, N. C., Deka, M. K. & Bailung, H. 2009 Observation of rarefactive ion acoustic solitary waves in dusty plasma containing negative ions. Phys. Plasmas 16, 063701.Google Scholar
Barkan, A., D’Angelo, N. & Merlino, R. L. 1994 Charging of dust grains in a plasma. Phys. Rev. Lett. 73, 3093.Google Scholar
Bharuthram, R. & Shukla, P. K. 1992 Large amplitude ion-acoustic solitons in a dusty plasma. Planet. Space Sci. 40, 973.Google Scholar
Fortov, V. E. & Morfill, G. E. 2010 Complex and Dusty Plasmas. CRC Press.Google Scholar
Goertz, C. K. 1989 Dusty plasmas in the solar system. Rev. Geophys. 27, 271.Google Scholar
Grün, E., Morfill, G. E. & Mendis, D. A. 1984 Planetary Rings. University of Arizona Press.Google Scholar
Hayashi, Y. & Tachibana, K. 1994 Observation of coulomb-crystal formation from carbon particles grown in a methane plasma. Japan. J. Appl. Phys. 33 (Part 2), L804.Google Scholar
Horanyi, M. & Mendis, D. A. 1986 The effects of electrostatic charging on the dust distribution at Halley’s comet. Astrophys. J. 307, 800.Google Scholar
Khanna, R., Brinks, E. & Mould, J. 2015 Astrophysics space Science introduces article numbering. Astrophys. Space Sci. 357, 1.CrossRefGoogle Scholar
Kim, H. 1977 Approximate theory of large-amplitude wave propagation. J. Plasma Phys. 17, 519.Google Scholar
Kumar, R. & Malik, H. K. 2011 Nonlinear solitary structures in an inhomogeneous magnetized plasma having trapped electrons and dust particles with different polarity. J. Phys. Soc. Japan. 80, 044502.Google Scholar
Kumar, R., Malik, H. K. & Singh, K. 2012 Effect of dust charging and trapped electrons on nonlinear solitary structures in an inhomogeneous magnetized plasma. Phys. Plasmas 19, 012114.CrossRefGoogle Scholar
Leontovich, M. A. 1966 Reviews of Plasma Physics. Consultants Bureau.Google Scholar
Luo, Q. Z., D’Angelo, N. & Merlino, R. L. 2000 Ion acoustic shock formation in a converging magnetic field geometry. Phys. Plasmas 7, 2370.Google Scholar
Luo, Q. Z. & Merlino, R. L. 1999 Experimental study of shock formation in a dusty plasma. Phys. Plasmas 6, 3455.Google Scholar
Malakolkalami, B. & Mohammadi, T. 2012 Propagation of solitary waves and shock wavelength in the pair plasma. J. Plasma Phys. 78, 05.Google Scholar
Malakolkalami, B. & Mohammadi, T. 2014 Some aspects of the shock wave in pair plasma. Open Plasma Phys. J. 7, 199.Google Scholar
Malik, H. K. & Kawata, S. 2007 Soliton propagation in an inhomogeneous plasma at critical density of negative ions: effects of gyratory and thermal motions of ions. Phys. Plasmas 14, 102110.CrossRefGoogle Scholar
Malik, H. K. & Malik, R. 2014 Unperturbed state and solitary structures in an electron–positron plasma having dust impurity and density inhomogeneity. J. Plasma Phys. 80, 629.CrossRefGoogle Scholar
Malik, H. K. & Stroth, U. 2008 Nonlinear solitary waves (solitons) in inhomogeneous magnetized warm plasma with negative ions and nonisothermal electrons. Plasma Sources Sci. Technol. 17, 035005.Google Scholar
Malik, H. K., Tomar, R. & Dahiya, R. P. 2014 Conditions for reflection and transmission of an ion acoustic soliton in a dusty plasma with variable charge dust. Phys. Plasmas 21, 072112.Google Scholar
Mendis, D. A. & Rosenberg, M. 1992 Some aspects of dust–plasma interactions in the cosmic environment. IEEE Trans. Plasma Sci. 20, 929.Google Scholar
Nakamura, Y. 1987 Observation of large-amplitude ion acoustic solitary waves in a plasma. J. Plasma Phys. 38, 461.Google Scholar
Nakamura, Y., Bailung, H. & Shukla, P. K. 1999 Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602.Google Scholar
Nakamura, Y., Yokota, T. & Shukla, P. K. 2000 Frontiers in Dusty Plasmas. Elsevier.Google Scholar
Northrop, T. G. 1992 Dusty plasmas. Phys. Scr. 45, 475.Google Scholar
Peratt, A. L. 2015 Physics of the Plasma Universe. Springer.Google Scholar
Popel, S. I., Yu, M. Y. & Tsytovich, V. N. 1996 Shock waves in plasmas containing variable charge impurities. Phys. Plasmas 3, 4313.Google Scholar
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543.Google Scholar
Selwyn, G. S. 1993 A phenomenlogical study of particulates in plasma tools and processes. Japan. J. Appl. Phys. 32 (Part 1), 3068.Google Scholar
Sheridan, T. E. 1998 Some properties of large-amplitude negative-potential solitary waves in a three-component plasma. J. Plasma Phys. 60, 17.Google Scholar
Singh, D. K. & Malik, H. K. 2008 Solitons in inhomogeneous magnetized negative ion containing plasma with two temperature non-isothermal electrons. IEEE Trans. Plasma Sci. 36, 462.Google Scholar
Shukla, P. K. & Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. IoP.Google Scholar
Thomas, H., Morfill, G. E. & Dammel, V. 1994 Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652.Google Scholar
Turski, A. J., Atamaniuk, B. & Turska, E. 2003 Non-Linear Phenomena in Dusty Plasmas, Invited talk at the International Symposium Plasma, Warsaw, Poland, 9–12 September. arXiv:physics/0312073.Google Scholar
Turski, A. J., Atamaniuk, B. & Uchowski, K. 1999 Dusty plasma solitons in Vlasov plasmas. Arch. Mech. 51, 167.Google Scholar