Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T21:52:50.833Z Has data issue: false hasContentIssue false

Retrospective analysis of portal dosimetry pre-treatment quality assurance of intracranial SRS/SRT VMAT treatment plans

Published online by Cambridge University Press:  27 September 2021

Ernest Osei*
Affiliation:
Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
Sarah Graves
Affiliation:
Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
Johnson Darko
Affiliation:
Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
*
Author for correspondence: Dr Ernest Osei, Department of Medical Physics, Grand River Regional Cancer Centre, 835 King Street West, Kitchener, ON, Canada. Tel: 519 749 4300. E-mail: ernest.osei@grhosp.onca

Abstract

Background:

The complexity associated with the treatment planning and delivery of stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) volumetric modulated arc therapy (VMAT) plans which employs continuous dynamic modulation of dose rate, field aperture and gantry speed necessitates diligent pre-treatment patient-specific quality assurance (QA). Numerous techniques for pre-treatment VMAT treatment plans QA are currently available with the aid of several different devices including the electronic portal imager (EPID). Although several studies have provided recommendations for gamma criteria for VMAT pre-treatment QA, there are no specifics for SRS/SRT VMAT QA. Thus, we conducted a study to evaluate intracranial SRS/SRT VMAT QA to determine clinical action levels for gamma criteria based on the institutional estimated means and standard deviations.

Materials and methods:

We conducted a retrospective analysis of 118 EPID patient-specific pre-treatment QA dosimetric measurements of 47 brain SRS/SRT VMAT treatment plans using the integrated Varian solution (RapidArcTM planning, EPID and Portal dosimetry system) for planning, delivery and EPID QA analysis. We evaluated the maximum gamma (γmax), average gamma (γave) and percentage gamma passing rate (%GP) for different distance-to-agreement/dose difference (DTA/DD) criteria and low-dose thresholds.

Results:

The gamma index analysis shows that for patient-specific SRS/SRT VMAT QA with the portal dosimetry, the mean %GP is ≥98% for 2–3 mm/1–3% and Field+0%, +5% and +10% low-dose thresholds. When applying stricter spatial criteria of 1 mm, the mean %GP is >90% for DD of 2–3% and ≥88% for DD of 1%. The mean γmax ranges: 1·32 ± 1·33–2·63 ± 2·35 for 3 mm/1–3%, 1·57 ± 1·36–2·87 ± 2·29 for 2 mm/1–3% and 2·36 ± 1·83–3·58 ± 2·23 for 1 mm/1–3%. Similarly the mean γave ranges: 0·16 ± 0·06–0·19 ± 0·07 for 3 mm/1–3%, 0·21 ± 0·08–0·27 ± 0·10 for 2 mm/1–3% and 0·34 ± 0·14–0·49 ± 0·17 for 1 mm/1–3%. The mean γmax and mean γave increase with increased DTA and increased DD for all low-dose thresholds.

Conclusions:

The establishment of gamma criteria local action levels for SRS/SRT VMAT pre-treatment QA based on institutional resources is imperative as a useful tool for standardising the evaluation of EPID-based patient-specific SRS/SRT VMAT QA. Our data suggest that for intracranial SRS/SRT VMAT QA measured with the EPID, a stricter gamma criterion of 1 mm/2% or 1 mm/3% with ≥90% %GP could be used while still maintaining an in-control QA process with no extra burden on resources and time constraints.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Miranda-Filho, A, Pineros, M, Soerjomataram, I et al. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol 2017; 19 (2): 270280. doi: 10.1093/neuonc/now166 Google ScholarPubMed
Brenner, DR, Weir, HK, Demers, AA et al. Projected estimates of cancer in Canada in 2020. CMAJ 2020; 192 (9): E199E205. doi: 10.1503/cmaj.191292 CrossRefGoogle Scholar
Canadian Cancer Society. Brain and spinal cord cancer statistics. https://www.cancer.ca/en/cancer-information/cancer-type/brain-spinal/statistics/?region=on. Accessed on February 06 2021, 2021.Google Scholar
National Brain Tumor Society. Brain tumors by the numbers. https://events.braintumor.org/wp-content/uploads/2019/02/BrainTumorsBytheNumbers_Jan_2019.pdf. Accessed on February 06 2021.Google Scholar
Park, J, Park, JW, Yea, JW. Non-coplanar whole brain radiotherapy is an effective modality for parotid sparing. Yeungnam Univ J Med 2019; 36 (1): 3642. doi: 10.12701/yujm.2019.00087. Epub 2019 Jan 3.CrossRefGoogle Scholar
McTyre, E, Scott, J, Chinnaiyan, P. Whole brain radiotherapy for brain metastasis. Surg Neurol Int 2013; 4 (Suppl 4): S236S244. doi: 10.4103/2152-7806.111301 Google ScholarPubMed
Sood, S, Pokhrel, D, McClinton, C, Lominska, C, Badkul, R, Jiang, H, Wang, F. Volumetric-modulated arc therapy (VMAT) for whole brain radiotherapy: not only for hippocampal sparing, but also for reduction of dose to organs at risk. Med Dosim 2017; 42 (4): 375383. doi: 10.1016/j.meddos.2017.07.005. Epub 2017 Aug 16.CrossRefGoogle Scholar
Pokhrel, D, Sood, S, Kumar, P et al. Volumetric modulated arc therapy (VMAT) significantly reduces treatment time and monitor units for whole-brain radiation therapy (WBRT) while still meeting RTOG Protocol 0933 hippocampal sparing constraints. Int J Radiat Oncol 2015; 93 (3): E621. doi: 10.1016/j.ijrobp.2015.07.2132 CrossRefGoogle Scholar
Remick, JS, Kowalski, E, Khairnar, R et al. A multi-center analysis of single-fraction versus hypofractionated stereotactic radiosurgery for the treatment of brain metastasis. Radiat Oncol 2020; 15 (1): 128. doi: 10.1186/s13014-020-01522-6 CrossRefGoogle ScholarPubMed
Yamamoto, M, Serizawa, T, Shuto, T et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol 2014; 15 (4): 387395. doi: 10.1016/S1470-2045(14)70061-0. Epub 2014 Mar 10.CrossRefGoogle ScholarPubMed
Jagannathan, J, Petit, JH, Balsara, K, Hudes, R, Chin, LS. Long-term survival after gamma knife radiosurgery for primary and metastatic brain tumors. Am J Clin Oncol 2004; 27 (5): 441444. doi: 10.1097/01.coc.0000128721.94095.e4 CrossRefGoogle Scholar
Matsunaga, S, Shuto, T, Kawahara, N, Suenaga, J, Inomori, S, Fujino, H. Gamma Knife surgery for brain metastases from colorectal cancer. Clinical article. J Neurosurg 2011; 114 (3): 782789. doi: 10.3171/2010.9.JNS10354. Epub 2010 Oct 15.CrossRefGoogle ScholarPubMed
Jagannathan, J, Yen, CP, Ray, DK et al. Gamma Knife radiosurgery to the surgical cavity following resection of brain metastases. J Neurosurg 2009; 111 (3): 431438. doi: 10.3171/2008.11.JNS08818 CrossRefGoogle Scholar
Serizawa, T, Iuchi, T, Ono, J et al. Gamma knife treatment for multiple metastatic brain tumors compared with whole-brain radiation therapy. J Neurosurg 2000; 93 (Suppl 3): 3236. doi: 10.3171/jns.2000.93.supplement CrossRefGoogle ScholarPubMed
Gerosa, M, Nicolato, A, Foroni, R et al. Gamma knife radiosurgery for brain metastases: a primary therapeutic option. J Neurosurg 2002; 97 (Suppl 5): 515524. doi: 10.3171/jns.2002.97.supplement CrossRefGoogle ScholarPubMed
Bas Ayata, H, Ceylan, C, Kılıç, A, Güden, M, Engin, K. Comparison of multiple treatment planning techniques for high-grade glioma tumors near to critical organs. Oncol Res Treat 2018; 41: 514519. doi: 10.1159/000487642 CrossRefGoogle ScholarPubMed
Zhang, S, Yang, R, Shi, C et al. Noncoplanar VMAT for brain metastases: a plan quality and delivery efficiency comparison with coplanar VMAT, IMRT, and CyberKnife. Technol Cancer Res Treat 2019; 18: 1533033819871621. doi: 10.1177/1533033819871621 CrossRefGoogle ScholarPubMed
Yuen, AHL, Wu, PM, Li, AKL, Mak, PCY. Volumetric modulated arc therapy (VMAT) for hippocampal-avoidance whole brain radiation therapy: planning comparison with Dual-arc and Split-arc partial-field techniques. Radiat Oncol 2020; 15 (1): 42. doi: 10.1186/s13014-020-01488-5 CrossRefGoogle ScholarPubMed
Teoh, M, Clark, CH, Wood, K, Whitaker, S, Nisbet, A. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol 2011; 84 (1007): 967996. doi: 10.1259/bjr/22373346 CrossRefGoogle ScholarPubMed
Andrevska, A, Knight, KA, Sale, CA. The feasibility and benefits of using volumetric arc therapy in patients with brain metastases: a systematic review. J Med Radiat Sci 2014; 61 (4): 267276. doi: 10.1002/jmrs.69. Epub 2014 Sep 26.CrossRefGoogle ScholarPubMed
Otto, K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008; 35 (1): 310317. doi: 10.1118/1.2818738 CrossRefGoogle Scholar
Xia, Y, Adamson, J, Zlateva, Y, Giles, W. Application of TG-218 action limits to SRS and SBRT pre-treatment patient specific QA. J Radiosurg SBRT 2020; 7 (2): 135147.Google ScholarPubMed
Howell, RM, Smith, IPN, Jarrio, CS. Establishing action levels for EPID-based QA for IMRT. J Appl Clin Med Phys 2008; 9 (3): 1625. doi: 10.1120/jacmp.v9i3.2721 CrossRefGoogle ScholarPubMed
Low, C, Toye, W, Phung, P, Huston, C. Patient-specific quality assurance protocol for volumetric modulated arc therapy using dose volume histogram. J Med Phys 2018; 43 (2): 112118. doi: 10.4103/jmp.JMP_138_17 Google Scholar
Saito, M, Kadoya, N, Sato, K et al. Comparison of DVH-based plan verification methods for VMAT: ArcCHECK-3DVH system and dynalog-based dose reconstruction. J Appl Clin Med Phys 2017; 18 (4): 206214. doi: 10.1002/acm2.12123. Epub 2017 Jun 26.CrossRefGoogle ScholarPubMed
Defoor, DL, Quino, LAV, Mavroidis, P, Papanikolaou, N, Stathakis, S. Anatomy-based, patient-specific VMAT QA using EPID or MLC log files. J Appl Clin Med Phys 2015; 16 (3): 5283. doi: 10.1120/jacmp.v16i3.5283 CrossRefGoogle Scholar
Liang, B, Liu, B, Zhou, F, Yin, FF, Wu, Q. Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: sensitivity analysis to machine errors. Radiat Oncol 2016; 11 (1): 146. doi: 10.1186/s13014-016-0725-4 CrossRefGoogle ScholarPubMed
Liu, B, Adamson, J, Rodrigues, A, Zhou, F, Yin, FF, Wu, Q. A novel technique for VMAT QA with EPID in cine mode on a Varian TrueBeam linac. Phys Med Biol 2013; 58 (19): 66836700. doi: 10.1088/0031-9155/58/19/6683. Epub 2013 Sep 9.CrossRefGoogle ScholarPubMed
Koo, M, Darko, J, Osei, E. Retrospective analysis of portal dosimetry pre-treatment quality assurance of hybrid IMRT breast treatment plans. J Radiother Pract. Cambridge University Press; 2021; 20 (1): 2229.CrossRefGoogle Scholar
Park, JM, Kim, J, Park, SY et al. Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans. Radiat Oncol 2018; 13 (1): 175. doi: 10.1186/s13014-018-1123-x Google ScholarPubMed
Stojadinovic, S, Ouyang, L, Gu, X, Pompoš, A, Bao, Q, Solberg, TD. Breaking bad IMRT QA practice. J Appl Clin Med Phys 2015; 16 (3): 154165. doi: 10.1120/jacmp.v16i3.5242 CrossRefGoogle ScholarPubMed
Nelms, BE, Chan, MF, Jarry, G et al. Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels. Med Phys 2013; 40 (11): 111722. doi: 10.1118/1.4826166 CrossRefGoogle ScholarPubMed
Hussein, M, Rowshanfarzad, P, Ebert, MA, Nisbet, A, Clark, CH. A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems. Radiother Oncol 2013; 109 (3): 370376. doi: 10.1016/j.radonc.2013.08.048. Epub 2013 Oct 4.CrossRefGoogle ScholarPubMed
Vieillevigne, L, Molinier, J, Brun, T, Ferrand, R. Gamma index comparison of three VMAT QA Systems and evaluation of their sensitivity to delivery errors. Phys Med 2015; 31 (7): 720725. doi: 10.1016/j.ejmp.2015.05.016. Epub 2015 Jun 19.CrossRefGoogle ScholarPubMed
Bailey, DW, Kumaraswamy, L, Bakhtiari, M, Malhotra, HK, Podgorsak, MB. EPID dosimetry for pretreatment quality assurance with two commercial systems. J Appl Clin Med Phys 2012; 13 (4): 3736. doi: 10.1120/jacmp.v13i4.3736 CrossRefGoogle ScholarPubMed
Maraghechi, B, Davis, J, Badu, S, Fleck, A, Darko, J, Osei, E. Retrospective analysis of portal dosimetry pre-treatment quality assurance of prostate volumetric-modulated arc therapy (VMAT) plans. J Radiother Pract. Cambridge University Press; 2018; 17 (1): 4452.CrossRefGoogle Scholar
Mohamed, IE, Ibrahim, AG, Zidan, HM, El-Bahkiry, HS, El-sahragti, AY. Physical dosimetry of volumetric modulated arc therapy (VMAT) using EPID and 2D array for quality assurance. Egypt J Radiol Nucl Med 2018; 49(2): 477484. doi: 10.1016/j.ejrnm.2018.02.003 CrossRefGoogle Scholar
Quino, LAV, Chen, X, Fitzpatrick, M et al. Patient specific pre-treatment QA verification using an EPID approach. Technol Cancer Res Treat 2014; 13 (1): 110. doi: 10.7785/tcrt.2012.500351. Epub 2013 Jun 24.CrossRefGoogle Scholar
Agarwal, A, Rastogi, N, Maria Das, KJ, Yoganathan, SA, Udayakumar, D, Kumar, S. Investigating the electronic portal imaging device for small radiation field measurements. J Med Phys 2017; 42 (2): 5964. doi: 10.4103/jmp.JMP_131_16 CrossRefGoogle ScholarPubMed
Greer, PB, Popescu, CC. Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy. Med Phys 2003; 30 (7): 16181627. doi: 10.1118/1.1582469 CrossRefGoogle ScholarPubMed
Varian Medical Systems. Portal Imaging and Portal Dosimetry Reference Guide. Palo Alto, CA, USA: Varian Medical Systems, 2008.Google Scholar
Low, DA, Harms, WB, Mutic, S, Purdy, JA. A technique for the quantitative evaluation of dose distributions. Med Phys 1998; 25 (5): 656661. doi: 10.1118/1.598248 CrossRefGoogle ScholarPubMed
Low, DA, Dempsey, JF. Evaluation of the gamma dose distribution comparison method. Med Phys 2003; 30 (9): 24552464. doi: 10.1118/1.1598711.CrossRefGoogle ScholarPubMed
Maraghechi, B, Davis, J, Mitchell, N, Shah, M, Fleck, A, Darko, J, Osei, E. The sensitivity of gamma index analysis to detect multileaf collimator (MLC) positioning errors using Varian TrueBeam EPID and ArcCHECK for patient-specific prostate volumetric-modulated arc therapy (VMAT) quality assurance. J Radiother Pract. Cambridge University Press; 2018; 17 (1): 6677.CrossRefGoogle Scholar
Yeo, IJ, Kim, J. A procedural guide to film dosimetry: with emphasis on IMRT, 1st edition. Madison, WI: Medical Physics Publishing; 2004: 4.Google Scholar
Ezzell, GA, Burmeister, JW, Dogan, N et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 2009; 36: 53595373.CrossRefGoogle ScholarPubMed
Stock, M, Kroupa, B, Georg, D. Interpretation and evaluation of the gamma index and the gamma index angle for the verification of IMRT hybrid plans. Phys Med Biol 2005; 50 (3): 399411. doi: 10.1088/0031-9155/50/3/001 CrossRefGoogle ScholarPubMed
Miften, M, Olch, A, Mihailidis, D et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys 2018; 45 (4): e53e83. doi: 10.1002/mp.12810. Epub 2018 Mar 23.CrossRefGoogle ScholarPubMed
Stasi, M, Bresciani, S, Miranti, A, Maggio, A, Sapino, V, Gabriele, P. Pretreatment patient-specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram. Med Phys 2012; 39 (12): 76267634. doi: 10.1118/1.4767763 CrossRefGoogle ScholarPubMed
Kim, JI, Park, SY, Kim, HJ, Kim, JH, Ye, SJ, Park, JM. The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT. Radiat Oncol 2014; 9: 167. doi: 10.1186/1748-717X-9-167 CrossRefGoogle Scholar
Heilemann, G, Poppe, B, Laub, W. On the sensitivity of common gamma-index evaluation methods to MLC misalignments in Rapidarc quality assurance. Med Phys 2013; 40 (3): 031702. doi: 10.1118/1.4789580 CrossRefGoogle ScholarPubMed
Fredh, A, Scherman, JB, Fog, LS, Munck af Rosenschöld P. Patient QA systems for rotational radiation therapy: a comparative experimental study with intentional errors. Med Phys 2013; 40 (3): 031716. doi: 10.1118/1.4788645 CrossRefGoogle ScholarPubMed
Steers, JM, Fraass, BA. IMRT QA: selecting gamma criteria based on error detection sensitivity. Med Phys 2016; 43 (4): 1982. doi: 10.1118/1.4943953 CrossRefGoogle ScholarPubMed
Lechner, W, Primeßnig, A, Nenoff, L, Wesolowska, P, Izewska, J, Georg, D. The influence of errors in small field dosimetry on the dosimetric accuracy of treatment plans. Acta Oncol 2020; 59 (5): 511517. doi: 10.1080/0284186X.2019.1685127. Epub 2019 Nov 7.CrossRefGoogle ScholarPubMed
Childress, NL, White, RA, Bloch, C, Salehpour, M, Dong, L, Rosen, II. Retrospective analysis of 2D patient-specific IMRT verifications. Med Phys 2005; 32 (4): 838850. doi: 10.1118/1.1879272 CrossRefGoogle ScholarPubMed
Budgell, GJ, Perrin, BA, Mott, JH, Fairfoul, J, Mackay, RI. Quantitative analysis of patient-specific dosimetric IMRT verification. Phys Med Biol 2005; 50 (1): 103119. doi: 10.1088/0031-9155/50/1/009 CrossRefGoogle ScholarPubMed
Atiq, M, Atiq, A, Iqbal, K, Shamsi, QA, Andleeb, F, Buzdar, SA. Interpretation of Gamma Index for Quality Assurance of Simultaneously Integrated Boost (SIB) IMRT Plans for Head and Neck Carcinoma. Pol J Med Phys Eng 2017; 23 (4): 9397.CrossRefGoogle Scholar
van Zijtveld, M, Dirkx, ML, de Boer, HC, Heijmen, BJ. Dosimetric pre-treatment verification of IMRT using an EPID; clinical experience. Radiother Oncol 2006; 81 (2): 168175. doi: 10.1016/j.radonc.2006.09.008. Epub 2006 Oct 19.CrossRefGoogle ScholarPubMed