Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T12:42:03.143Z Has data issue: false hasContentIssue false

Rotational effect and dosimetric impact: HDMLC vs 5-mm MLC leaf width in single isocenter multiple metastases radiosurgery with Brainlab Elements™

Published online by Cambridge University Press:  22 April 2022

Carlos Daniel Venencia
Affiliation:
Instituto Zunino, Obispo Oro 423, 5000, Córdoba, Argentina
José Alejandro Rojas-López*
Affiliation:
Instituto Zunino, Obispo Oro 423, 5000, Córdoba, Argentina Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
Rogelio Manuel Díaz Moreno
Affiliation:
Instituto Zunino, Obispo Oro 423, 5000, Córdoba, Argentina
Silvia Zunino
Affiliation:
Instituto Zunino, Obispo Oro 423, 5000, Córdoba, Argentina
*
Author for correspondence: Instituto Zunino, Obispo Oro 423, 5000, Córdoba, Argentina. E-mail: alexrojas@ciencias.unam.mx

Abstract

Purpose:

To analyse the impact of multileaf collimator (MLC) leaf width in multiple metastases radiosurgery (SRS) considering the target distance to isocenter and rotational displacements.

Methods:

Ten plans were optimised. The plans were created with Elements Multiple Mets SRS v2·0 (Brainlab AG, Munchen, Germany). The mean number of metastases per plan was 5 ± 2 [min 3, max 9], and the mean volume of gross tumour volume (GTV) was 1·1 ± 1·3 cc [min 0·02, max 5·1]. Planning target volume margin criterion was based on GTV-isocenter distance and target dimensions. Plans were performed using 6 MV with high-definition MLC (HDMLC) and reoptimised using 5-mm MLC (MLC-5). Plans were compared using Paddick conformity index (PCI), gradient index, monitor units , volume receiving half of prescription isodose (PIV50), maximum dose to brainstem, optic chiasm and optic nerves, and V12Gy, V10Gy and V5Gy for healthy brain were analysed. The maximum displacement due to rotational combinations was optimised by a genetic algorithm for both plans. Plans were reoptimised and compared using optimised margin.

Results:

HDMLC plans had better conformity and higher dose falloff than MLC-5 plans. Dosimetric differences were statistically significant (p < 0·05). The smaller the lesion volume, the higher the dosimetric differences between both plans. The effect of rotational displacements produced for each target in SRS was not dependent on the MLC (p > 0·05).

Conclusions:

The finer HDMLC offers dosimetric advantages compared with the MLC-5 in terms of target conformity and dose to the surrounding organs at risk. However, only dose falloff differences due to rotations depend on MLC.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brezovich, IA, Wu, X, Popple, RA et al. Stereotactic radiosurgery with MLC-defined arcs: verification of dosimetry, spatial accuracy, and end-to-end tests. J Appl Clin Med Phys 2019; 20 (5): 8498. doi: 10.1002/acm2.12583 CrossRefGoogle ScholarPubMed
Wang, SC, Wang, X, He, YB et al. A dosimetric comparison of the fixed-beam IMRT plans using different leaf width of multileaf collimators for the intermediate risk prostate cancer, Radiat Phys and Chem 2016; 127: 210221. doi: 10.1016/j.radphyschem.2016.07.008 CrossRefGoogle Scholar
Laoui, S, Kuo, JV, Al-Ghazi, M, Roa, DE. The effect of multileaf collimator leaf width on the quality of volumetric-modulated arc therapy stereotactic radiosurgery treatment plans. Inter J Radiat Oncol Biol Phys 2017; 99 (2): E682E683. doi: 10.1016/j.ijrobp.2017.06.2248 CrossRefGoogle Scholar
Jin, J, Yin, F, Ryu, S, Ajlouni, M, Kim, J. Quantitative dosimetric study using different leaf-width multileaf collimators for treatment planning of dynamic conformal and intensity-modulated radiosurgery. Inter J Radiat Oncol Biol Phys 2004; 60 (1): S641. doi: 10.1016/j.ijrobp.2004.07.663 CrossRefGoogle Scholar
Santos, T, Ventura, T, Capela, M, Lopes, MC. Dosimetric study on the consequences of replacing the mMLC collimator used for intracranial SRS by an integrated MLC-160. Int J Cancer Clin Res 2016; 3: 064. doi: 10.23937/2378-3419/3/4/1064 CrossRefGoogle Scholar
Kuntz, L, Matthis, R, Wegner, N, Lutz, S. Dosimetric comparison of mono-isocentric and multi-isocentric plans for oligobrain metastases: a single institutional experience. Cancer Radiother 2020; 24 (1): 5359. doi: 10.1016/j.canrad.2019.10.003 CrossRefGoogle ScholarPubMed
Slagowski, JM, Wen, Z. Selection of single-isocenter for multiple-target stereotactic brain radiosurgery to minimize total margin volume. Phys Med Biol 2020; 65 (18): 185012. doi: 10.1088/1361-6560/ab9703 CrossRefGoogle ScholarPubMed
Nakano, H, Tanabe, S, Utsunomiya, S et al. Effect of setup error in the single-isocenter technique on stereotactic radiosurgery for multiple brain metastases. J Appl Clin Med Phys 2020; 21–12:155165. doi: 10.1002/acm2.13081 CrossRefGoogle Scholar
Stanhope, C, Chang, Z, Wang, Z et al. Physics considerations for single-isocenter, volumetric modulated arc radiosurgery for treatment of multiple intracranial targets. Pract Radiat Oncol 2016; 6 (3): 207213. doi: 10.1016/j.prro.2015.10.010 CrossRefGoogle ScholarPubMed
Kraft, J, van Timmeren, JE, Mayinger, M et al. Distance to isocenter is not associated with an increased risk for local failure in LINAC-based single-isocenter SRS or SRT for multiple brain metastases. Radiother Oncol 2021; 159: 168175. doi: 10.1016/j.radonc.2021.03.022 CrossRefGoogle ScholarPubMed
Prentou, G, Pappas, EP, Logothetis, A et al. Dosimetric impact of rotational errors on the quality of VMAT-SRS for multiple brain metastases: comparison between single- and two-isocenter treatment planning techniques. J Appl Clin Med Phys 2020; 21 (3): 3244. doi: 10.1002/acm2.12815 CrossRefGoogle ScholarPubMed
Roper, J, Chanyavanich, V, Betzel, G, Switchenko, J, Dhabaan, A. Single-isocenter multiple-target SRS: risk of compromised coverage. Int J Radiat Oncol Biol Phys 2015; 93 (3): 540546. doi: 10.1016/j.ijrobp.2015.07.2262 CrossRefGoogle ScholarPubMed
Ruggieri, R, Naccarato, S, Mazzola, R et al. Linac-based VMAT radiosurgery for multiple brain lesions: comparison between a conventional multi-isocenter approach and a new dedicated mono-isocenter technique. Radiat Oncol 2018; 13: 38. doi: 10.1186/s13014-018-0985-2 CrossRefGoogle Scholar
Bortfeld, T, Schlegel, W, Höver, KH, Schulz-Ertner, D, Mini and micro multileaf collimators. German Cancer Research Center (DKFZ). https://www.aapm.org/meetings/99AM/pdf/2796-50260.pdf, Accesed July 19, 2021.Google Scholar
Wu, QJ, Wang, Z, Kirkpatrick, JP et al. Impact of collimator leaf width and treatment technique on stereotactic radiosurgery and radiotherapy plans for intra- and extracranial lesions. Radiat Oncol 2009; 4: 3. doi: 10.1186/1748-717X-4-3 CrossRefGoogle ScholarPubMed
Bossart, E, Mellon, EA, Monterroso, I et al. Assessment of single isocenter linear accelerator radiosurgery for metastases and base of skull lesions. Phys Med 2021; 81: 18. doi: 10.1016/j.ejmp.2020.11.011 CrossRefGoogle ScholarPubMed
Monk, JE, Perks, JR, Doughty, D, Plowman, PN. Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2003; 57: 14431449. doi: 10.1016/s0360-3016(03)01579-7 CrossRefGoogle ScholarPubMed
Chern, SS, Leavitt, DD, Jensen, RL, Shrieve, DC. Is smaller better? Comparison of 3-mm and 5-mm leaf size for stereotactic radiosurgery: A dosimetric study. Int J Radiat Oncol Biol Phys 2006; 66: 7681. doi: 10.1016/j.ijrobp.2006.04.061 CrossRefGoogle Scholar
Jin, JY, Yin, FF, Ryu, S, Ajlouni, M, Kim, JH. Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity modulated radiosurgery. Med Phys 2005; 32: 405411. doi: 10.1118/1.1842911 CrossRefGoogle ScholarPubMed
Kubo, HD, Wilder, RB, Pappas, CTE. Impact of collimator leaf width on stereotactic radiosurgery and 3D conformal radiotherapy treatment plans. Int J Radiat Oncol Biol Phys 1999; 44: 937945. doi: 10.1016/S0360-3016(99)00041-3 CrossRefGoogle ScholarPubMed
Burmeister, J, McDermott, PN, Bossenberger, T et al. Effect of MLC leaf width on the planning and delivery of SMLC IMRT using the CORVUS inverse treatment planning system. Med Phys 2004; 31: 31873193. doi: 10.1118/1.1812607 CrossRefGoogle ScholarPubMed
Tanyi, JA, Kato, CN, Chen, Y, Chen, Z, Fuss, M. Impact of the high definition multileaf collimator on linear accelerator-based intracranial stereotactic radiosurgery. Br J Radiol 2011; 84: 629638. doi: 10.1259/bjr/19726857 CrossRefGoogle ScholarPubMed
Marrazzo, L, Zani, M, Pallotta, S et al. Comparison of stereotactic plans for brain tumors with two different multileaf collimating systems. J Appl Clin Med Phys 2014; 15: 2737. doi: 10.1120/jacmp.v15i1.4100 CrossRefGoogle ScholarPubMed
Abisheva, Z, Floyd, SR, Salama, JK et al. The effect of MLC leaf width in single-isocenter multi-target radiosurgery with volumetric modulated arc therapy. J Radiosurg SBRT 2019; 6 (2): 131138. https://pubmed.ncbi.nlm.nih.gov/31641549. Accessed March 20, 2021.Google ScholarPubMed
Tsui, SSW, Wu, VWC, Cheung, JSC. Comparison of dosimetric impact of intra-fractional setup discrepancy between multiple- and single-isocenter approaches in linac-based stereotactic radiotherapy of multiple brain metastases. J Appl Clin Med Phys 2021. doi: 10.1002/acm2.13484 Google ScholarPubMed
Klein, EE, Hanley, J, Bayouth, J et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys 2009; 36 (9): 4197–212. doi: 10.1118/1.3190392 CrossRefGoogle Scholar
Lutz, W, Winston, KR, Maleki, N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 1988; 14 (2): 373381. doi: 10.1016/0360-3016(88)90446-4 CrossRefGoogle ScholarPubMed
Kim, S, Tseng, TC, Morrow, A. Spatial variations of multiple off-axial targets for a single isocenter SRS treatment in Novalis Tx linac system. J Radiosurg SBRT 2015; 3 (4): 287296.Google ScholarPubMed
Calmels, L, Blak Nyrup Biancardo, S, Sibolt, P et al. Single-isocenter stereotactic non-coplanar arc treatment of 200 patients with brain metastases: multileaf collimator size and setup uncertainties. Strahlenther Onkol 2021. doi: 10.1007/s00066-021-01846-6 Google ScholarPubMed
Zhou, S, Li, J, Du, Y, Yu, S, Wang, M, Wu, H, Yue, H. Development and longitudinal analysis of plan-based streamlined quality assurance on multiple positioning guidance systems with single phantom setup. Front Oncol 2021; 11: 683733. doi: 10.3389/fonc.2021.683733 CrossRefGoogle ScholarPubMed
Molinier, J, Kerr, C, Simeon, S, Ailleres, N, Charissoux, M, Azria, D, Fenoglietto, P. Comparison of volumetric-modulated arc therapy and dynamic conformal arc treatment planning for cranial stereotactic radiosurgery. J Appl Clin Med Phys 2016; 17 (1): 92101. doi: 10.1120/jacmp.v17i1.5677 CrossRefGoogle ScholarPubMed
Rojas-López, JA, Díaz Moreno, RM, Venencia, CD. Use of genetic algorithm for PTV optimization in single isocenter multiple metastases radiosurgery treatments with Brainlab Elements™. Phys Med 2021; 86: 8290. doi: 10.1016/j.ejmp.2021.05.031 CrossRefGoogle ScholarPubMed
Ezzell, GA. The spatial accuracy of two frameless, linear accelerator-based systems for single-isocenter, multitarget cranial radiosurgery. J Appl Clin Med Phys 2017; 18: 3743. doi: 10.1002/acm2.12044 CrossRefGoogle ScholarPubMed
Guckenberger, M, Roesch, J, Baier, K, Sweenwy, RA, Flentje, M. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery. Radiat Oncol 2012; 6367. doi: 10.1186/1748-717X-7-63 CrossRefGoogle ScholarPubMed
Jhaveri, J, Chowdhary, M, Zhang, X et al. Does size matter? Investigating the optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastases. J Neurosurg 2018; 130 (3): 797803. doi: 10.3171/2017.9.JNS171735 CrossRefGoogle ScholarPubMed
Vergalasova, I, Liu, H, Alonso-Basanta, M et al. Multi-institutional dosimetric evaluation of modern day Stereotactic Radiosurgery (SRS) treatment options for multiple brain metastases. Front. Oncol 2019; 9: 483. doi: 10.3389/fonc.2019.00483 CrossRefGoogle ScholarPubMed
Gevaert, T, Steenbeke, F, Pellegri, L et al. Evaluation of a dedicated brain metastases treatment planning optimization for radiosurgery: a new treatment paradigm? Radiat Oncol 2016: 1113. doi: 10.1186/s13014-016-0593-y Google ScholarPubMed
Medical Physics. Institute of radiooncology, KFJ Hospital Vienna. Dosimetric Parameters of the HD120 MLC. https://www.wienkav.at/kav/kfj/91033454/physik/irohome.html. Accessed July 7, 2021.Google Scholar
TrueBeam technical reference guide: Volumen 2 -Imaging P-005924002-B, Varian Medical System. 2016. https://www.wienkav.at/kav/kfj/91033454/physik/irohome.htm. Accessed September 10, 2021.Google Scholar
Sharma, DS, Dongre, PM, Mhatre, V, Heigrujam, M. Physical and dosimetric characteristic of high-definition multileaf collimator (HDMLC) for SRS and IMRT. J Appl Clin Med Phys 2011; 12 (3): 3475. doi: 10.1120/jacmp.v12i3.3475 CrossRefGoogle ScholarPubMed
Mohan, R, Chui, C, Lidofsky, L. Energy and angular distributions of photons from medical linear accelerators. Med Phys 1985; 12 (5): 592597. doi: 10.1118/1.595680 CrossRefGoogle ScholarPubMed
Mohan, R, Chui, C, Lidofsky, L. Differential pencil beam dose computation model for photons. Med Phys 1986; 13 (1): 6473. doi: 10.1118/1.595924 CrossRefGoogle ScholarPubMed
Mohan, R, Chui, CS. Use of fast Fourier transforms in calculating dose distributions for irregularly shaped fields for three-dimensional treatment planning. Med Phys 1987; 14 (1): 7077. doi: 10.1118/1.596097 CrossRefGoogle ScholarPubMed
Rojas-López, JA, Venencia, CD. Importance of Beam-Matching between TrueBeam STx and Novalis Tx in Pre-treatment quality assurance using portal dosimetry. J Med Phys 2021; 46: 211220. doi: 10.4103/jmp.JMP_12_21 Google ScholarPubMed
Paddick, I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 2000; 93 (Suppl 3): 219232. doi: 10.3171/jns.2000.93.supplement CrossRefGoogle ScholarPubMed
Paddick, I, Lippitz, B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg (Suppl) 2006; 105: 194201. doi: 10.3171/sup.2006.105.7.194 CrossRefGoogle ScholarPubMed
Balagamwala, EH, Suh, JH, Barnett, GH et al. The importance of the conformality, heterogeneity, and gradient indices in evaluating gamma knife radiosurgery treatment plans for intracranial meningiomas. Int J Radiat Oncol Biol Phys 2012; 83 (1): 14061413. doi: 10.1016/j.ijrobp.2011.10.024 CrossRefGoogle ScholarPubMed
Wagner, TH, Bova, FJ, Friedman, WA, Buatti, JM, Bouchet, LG, Meeks, SL. A simple and reliable index for scoring rival stereotactic radiosurgery plans. Int J Radiat Oncol Biol Phys 2003; 57 (4): 11411149. doi: 10.1016/s0360-3016(03)01563-3 CrossRefGoogle ScholarPubMed
Sale, M, Sherer, EA. A genetic algorithm based global search strategy for population pharmacokinetic/pharmacodynamic model selection. Br J Clin Pharmacol 2015; 79 (1): 2839. doi: 10.1111/bcp.12179 CrossRefGoogle ScholarPubMed
Shi, X, Long, W, Li, Y, Deng, D. Multi-population genetic algorithm with ER network for solving flexible job shop scheduling problems. PLoS One 2020; 15 (5): e0233759. doi: 10.1371/journal.pone.0233759 CrossRefGoogle Scholar
Ghosh, M, Adhikary, S, Ghosh, KK, Sardar, A, Begum, S, Sarkar, R. Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods. Med Biol Eng Comput 2019; 57 (1): 159176. doi: 10.1007/s11517-018-1874-4 CrossRefGoogle ScholarPubMed
Mantzaris, D, Anastassopoulos, G, Adamopoulos, A. Genetic algorithm pruning of probabilistic neural networks in medical disease estimation. Neural Netw 2011; 24 (8): 831835. doi: 10.1016/j.neunet.2011.06.003 CrossRefGoogle ScholarPubMed
Geng, X, Guan, J, Dong, Q, Zhou, S. An improved genetic algorithm for statistical potential function design and protein structure prediction. Int J Data Min Bioinform 2012; 6 (2): 162177. doi: 10.1504/ijdmb.2012.048174 CrossRefGoogle ScholarPubMed
Huang, Y, Chin, K, Robbins, JR et al. Radiosurgery of multiple brain metastases with single-isocenter dynamic conformal arcs (SIDCA). Radiother Oncol 2014; 112 (1): 128132. doi: 10.1016/j.radonc.2014.05.009 CrossRefGoogle Scholar
Clark, GM, Popple, RA, Young, PE, Fiveash, JB. Feasibility of single-isocenter volumetric modulated arc radiosurgery for treatment of multiple brain metastases. Int J Radiat Oncol Biol Phys 2010; 76 (1): 296302. doi: 10.1016/j.ijrobp.2009.05.029 CrossRefGoogle ScholarPubMed
Novalis Circle Symposium. Impact of margins for single isocenter multiple target treatments AAPM 2019. https://www.novaliscircle.org/video/impact-of-margins-for-single-isocenter-multiple-target-treatments-dWQSM9a/. Accessed October 8, 2020.Google Scholar
Chae, S, Woong, LK, Hyun, S S. Dosimetric impact of multileaf collimator leaf width according to sophisticated grade of technique in the IMRT and VMAT planning for pituitary adenoma lesion. Oncotarget 2016; 7: 7811978126. Retrieved from https://www.oncotarget.com/article/12974/text/. Accessed July 21, 2021.CrossRefGoogle ScholarPubMed
Shaw, E, Kline, R, Gillin, M et al. Radiation therapy oncology group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys, 1993; 27 (5): 12311239. doi: 10.1016/0360-3016(93)90548-a CrossRefGoogle ScholarPubMed
Ohtakara, K, Hayashi, S, Tanaka, H, Hoshi, H. Dosimetric comparison of 2.5 mm vs. 3.0 mm leaf width micro-multileaf collimator-based treatment systems for intracranial stereotactic radiosurgery using dynamic conformal arcs: implications for treatment planning. Jpn J Radiol 2011; 29 (9): 630638. doi: 10.1007/s11604-011-0606-6 CrossRefGoogle ScholarPubMed