Published online by Cambridge University Press: 07 October 2019
The aim of this study was to produce a low-cost anatomical model of adult male including lower limbs to evaluate the three-dimensional dose distribution for dosimetry measurements, especially in total body irradiation (TBI) and total skin electron therapy (TSET).
Computed tomography (CT) scan images of the atomic energy organisation RANDO phantom and lower limb CT scan images of 20 healthy persons were averaged. Selections of different body tissues substitute materials and phantom validation were performed according to previous studies worked on construction of radiation therapy phantoms.
The dosimetry aspect of the selected substitute materials from all considered methods showed that they were in good agreement with real human tissue, especially bone, with a percentage error of 0·5%. The results show that the electron densities obtained from the linear attenuation coefficient (reDLAC) for the tissue equivalent material used in the phantom is a better option for validation.
This validated phantom has numerous advantages over the origin type of RANDO phantom. Therefore, using it in TBI and TSET dosimetry is recommendable.