Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T05:10:33.493Z Has data issue: false hasContentIssue false

A review of applications of principles of quantum physics in oncology: do quantum physics principles have any role in oncology research and applications?

Published online by Cambridge University Press:  30 April 2019

Renata Raghunandan
Affiliation:
Department of Physics and Astronomy
Meaghan Voll
Affiliation:
Department of Biology, University of Waterloo, Waterloo, ON, Canada
Ernest Osei*
Affiliation:
Department of Physics and Astronomy Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
Johnson Darko
Affiliation:
Department of Physics and Astronomy Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
Raymond Laflamme
Affiliation:
Department of Physics and Astronomy Institute for Quantum Computing, University of Waterloo, ON, Canada
*
Author for correspondence: Ernest Osei, Grand River Regional Cancer Centre, 835 King Street West, Kitchener, Ontario N2G1G3, Canada. Tel: 519 749 4300 ext. 5407. E-mail: ernest.osei@grhosp.on.ca

Abstract

Background:

Research in the applications of the principles of quantum physics in oncology has progressed significantly over the past decades; and several research groups with professionals from diverse scientific background, including electrical engineers, mathematicians, biologists, atomic physicists, computer programmers, and biochemists, are working collaboratively in an unprecedented and pioneering economic, organisational and human effort searching for a wider and more effective, potentially definitive, understanding of the cancers. It is hypothesised that the principles of quantum physics could open new and broader understanding of the cancers and the development of new effective, targeted, accurate, personalised and possibly definitive cancer treatment.

Materials and methods:

This paper reports on a review of recent studies in the field of the applications of the principles of quantum physics in biology, chemistry, biochemistry and quantum physics in cancer research, including quantum physics principles and cancer, quantum modelling techniques, quantum dots and its applications in oncology, quantum cascade laser histopathology and quantum computing applications.

Conclusions:

The applications of the principles of quantum physics in oncology, chemistry and biology are providing new perspectives and greater insights into a long-studied disease, which could result in a greater understanding of the cancers and the potential for personalised and definitive treatment methods.

Type
Literature Review
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Uthamacumaran, A. A biophysical approach to cancer dynamics: quantum chaos and energy turbulence. BioSystems 2017; 156–157: 122. doi: 10.1016/j.biosystems.2017.03.004.CrossRefGoogle ScholarPubMed
Arndt-Jovin, D J, Kantelhardt, S R, Caarls, W et al. Tumor-targeted quantum dots can help surgeons find tumor boundaries. IEEE Trans NanoBiosci 2009; 8 (1): 6571. doi: 10.1109/TNB.2009.2016548.CrossRefGoogle ScholarPubMed
Davies, P, Demetrius, L A, Tuszynski, J A. Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression. AIP Adv 2012; 2 (1): 14. doi: 10.1063/1.3697850.CrossRefGoogle ScholarPubMed
Demetrius, L A, Coy, J F, Tuszynski, J A. Cancer proliferation and therapy: the Warburg effect and quantum metabolism. Theor Biol Med Model 2010; 7 (1): 2. doi: 10.1186/1742-4682-7-2.CrossRefGoogle ScholarPubMed
Liberti, M V, Locasale, J W. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 2016; 41 (3): 211218. doi: 10.1016/j.tibs.2015.12.001.CrossRefGoogle ScholarPubMed
Arndt, M, Juffmann, T, Vedral, V. Quantum physics meets biology. HFSP J 2009; 3 (6): 386400. doi: 10.2976/1.3244985.CrossRefGoogle ScholarPubMed
Bordonaro, M, Ogryzko, V. Quantum biology at the cellular level—elements of the research program. BioSystems 2013; 112 (1): 1130. doi: 10.1016/j.biosystems.2013.02.008.CrossRefGoogle ScholarPubMed
Friedman, R, Boye, K, Flatmark, K. Molecular modelling and simulations in cancer. Biochim Biophys Acta 2013; 1836 (1): 114. doi: 10.1016/j.bbcan.2013.02.001.Google Scholar
Mota, K B, Lima Neto, J X, Lima Costa, A H et al. A quantum biochemistry model of the interaction between the estrogen receptor and the two antagonists used in breast cancer treatment. Comput Theor Chem 2016; 1089 (2): 2127. doi: 10.1021/ar050190o.CrossRefGoogle Scholar
Tavares, A B, Lima Neto, J X, Fulco, U L et al. Inhibition of the checkpoint protein PD-1 by the therapeutic antibody pembrolizumab outlined by quantum chemistry. Sci Rep 2018; 8 (1): 1840–13. doi: 10.1038/s41598-018-20325-0.CrossRefGoogle ScholarPubMed
Jacobson, J. A quantum theory of disease, including cancer and aging. Integr Mol Med 2016; 3 (1): 524541. doi: 10.15761/IMM.1000200.CrossRefGoogle Scholar
Jafri, M A, Ansari, S A, Alqahtani, M H et al. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med 2016; 8 (1): 69. doi: 10.1186/s13073-016-0324-x.CrossRefGoogle ScholarPubMed
Djordjevic, I B. Quantum biological channel modeling and capacity calculation. Life 2012; 2 (4): 377391. doi: 10.3390/life2040377.CrossRefGoogle ScholarPubMed
Bassan, P, Weida, M, Rowlette, J. Large scale infrared imaging of tissue microarrays (TMAs) using a tunable quantum cascade laser (QCL) based microscope. Analyst 2014. https://search.credoreference.com/content/entry/heliconhe/analyst/0.10.1039/C4AN00638KCrossRefGoogle Scholar
Yao, J, Li, L, Li, P et al. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater 2018; 74: 3655. doi: 10.1016/j.actbio.2018.05.004.CrossRefGoogle ScholarPubMed
Thakur, M, Kumawat, M K, Srivastava, R. Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Adv 2017; 7: 5251–526. doi: 10.1039/c6ra25976f.CrossRefGoogle Scholar
Ladik, J J, Bende, A. Quantum molecular biological investigation of the onset of cancer. Int J Quantum Chem 2014; 114 (18): 12291235. doi: 10.1002/qua.24713.CrossRefGoogle Scholar
Kumar, A, Elstner, M, Suhai, S. SCC-DFTB-D study of intercalating carcinogens: benzo(a)pyrene and its metabolites complexed with the G--C base pair. Int J Quantum Chem 2003; 95: 4459.10.1002/qua.10715CrossRefGoogle Scholar
Deubel, D V. The chemistry of dinuclear analogues of the anticancer drug cisplatin. A DFT/CDM study. J Am Chem Soc 2006; 128: 16541663.10.1021/ja055741kCrossRefGoogle ScholarPubMed
Corminboeuf, C, Hu, P, Tuckerman, M E, Zhang, Y. Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein. J Am Chem Soc 2006; 128 (14): 45304531. doi: 10.1021/ja0600882.CrossRefGoogle ScholarPubMed
Aradi, B, Hourahine, B, Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 2007; 111: 56785684.10.1021/jp070186pCrossRefGoogle ScholarPubMed
Fedorov, D G, Nagata, T, Kitaura, K. Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 2012; 14: 75627577.10.1039/c2cp23784aCrossRefGoogle ScholarPubMed
Kurian, P, Dunston, G, Lindesay, J. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases. J Theor Biol 2015; 391: 102112. doi: 10.1016/j.jtbi.2015.11.018.CrossRefGoogle ScholarPubMed
Plankar, M, Jerman, I, Krašovec, R. On the origin of cancer: can we ignore coherence? Prog Biophys Mol Biol 2011; 106 (2): 380390. doi: 10.1016/j.pbiomolbio.2011.04.001.CrossRefGoogle ScholarPubMed
Gauger, E M, Rieper, E, Morton, J J et al. Sustained quantum coherence and entanglement in the avian compass. Phys Rev Lett 2011; 106 (4): 040503. doi: 10.1103/PhysRevLett.106.040503.CrossRefGoogle ScholarPubMed
Hameroff, S R. A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation. BioSystems 2004; 77 (1–3): 119136. doi: 10.1016/j.biosystems.2004.04.006.CrossRefGoogle Scholar
Spiegel, K, Magistrato, A. Modeling anticancer drug-DNA interactions via mixed QM/MM molecular dynamics simulations. Org Biomol Chem 2006; 4 (13): 25072517. doi: 10.1039/B604263P.CrossRefGoogle ScholarPubMed
Roshini, A, Jagadeesan, S, Arivazhagan, L et al. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and anti-metastatic effects in metastatic lung cancer cell line. Mater Sci Eng C 2018; 92: 477488. doi: 10.1016/j.msec.2018.06.073.CrossRefGoogle ScholarPubMed
McHugh, K J, Jing, L, Behrens, A M et al. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv Mater 2018; 30 (18): 1706356 (1-18). doi: 10.1002/adma.201706356.CrossRefGoogle ScholarPubMed
Alivisatos, A P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996; 271: 933937. http://link.galegroup.com.proxy.lib.uwaterloo.ca/apps/doc/A18072642/AONE?u=uniwater&sid=AONE&xid=c3179298.10.1126/science.271.5251.933CrossRefGoogle Scholar
Yao, X, Tian, Z, Liu, J et al. Mesoporous silica nanoparticles capped with graphene quantum dots for potential chemo-photothermal synergistic cancer therapy. Langmuir ACS J Surf Colloids 2017; 33 (2): 591599. doi: 10.1021/acs.langmuir.6b04189.CrossRefGoogle ScholarPubMed
Zhang, M, Wang, W, Zhou, N et al. Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon 2017; 118: 752764. doi: 10.1016/j.carbon.2017.03.085.CrossRefGoogle Scholar
Cho, H S, Dong, Z, Pauletti, G M et al. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. Boca Raton: ACS Nano 2010; 4 (9): 53985404. doi: 10.1021/nn101000e.Google ScholarPubMed
Samia, A C S, Chen, X, Burda, C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 2003; 125 (51): 1573615737. doi: 10.1021/ja0386905.CrossRefGoogle ScholarPubMed
Ji, X, Peng, F, Zhong, Y et al. Fluorescent quantum dots synthesis, biomedical optical imaging, and biosafety assessment. Colloids Surf B 2014; 124: 132139. doi: 10.1016/j.colsurfb.2014.08.036.CrossRefGoogle ScholarPubMed
Fan, L, Chen, H, Teng, J et al. Evaluation of serum-paired miRNA ratios for early diagnosis of non-small cell lung cancer using quantum dot-based suspension array. J Nanomater 2018; 22 (4): 493502. doi: 10.1155/2018/5456731.Google Scholar
Bilan, R, Nabiev, I, Sukhanova, A. Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem 2016; 17 (22): 21032114. doi: 10.1002/cbic.201600357.CrossRefGoogle Scholar
Delehanty, J B, Bradburne, C E, Susumu, K et al. Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques. J Am Chem Soc 2011; 133: 1048210489. doi: 10.1021/ja200555z.CrossRefGoogle ScholarPubMed
Nabiev, I, Mitchell, S, Davies, A et al. Nonfunctionalized nanocrystals can exploit a cells active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett 2007; 7 (11): 34523461. doi: 10.1021/nl0719832.CrossRefGoogle ScholarPubMed
Alibolandi, M, Abnous, K, Sadeghi, F et al. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: in vitro and in vivo evaluation. Int J Pharm 2016; 500 (1–2): 162178. doi: 10.1016/j.ijpharm.2016.01.040.CrossRefGoogle ScholarPubMed
Cai, X, Luo, Y, Zhang, W et al. pH-sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. Nanomed Nanotechnol Biol Med 2016; 14 (5): 17611762. doi: 10.1016/j.nano.2017.11.071.Google Scholar
Dong, H, Dai, W, Ju, H et al. Multifunctional poly(l-lactide)-polyethylene glycol-grafted graphene quantum dots for intracellular microRNA imaging and combined specific-gene-targeting agents delivery for improved therapeutics. ACS Appl Mater Interfaces 2015; 7 (20): 1101511023. doi: 10.1021/acsami.5b02803.CrossRefGoogle ScholarPubMed
Tan, W B, Jiang, S, Zhang, Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 2006; 28 (8): 15651571. doi: 10.1016/j.biomaterials.2006.11.018.CrossRefGoogle ScholarPubMed
Gao, X, Cui, Y, Levenson, R M et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22 (8): 969976. doi: 10.1038/nbt994.CrossRefGoogle ScholarPubMed
Kerman, K, Endo, T, Tsukamoto, M et al. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta 2007; 71 (4): 14941499. doi: 10.1016/j.talanta.2006.07.027. Epub 2006 Aug 22.CrossRefGoogle ScholarPubMed
Lin, Z, Ma, Q, Fei, X et al. A novel aptamer functionalized CuInS2 quantum dots probe for daunorubicin sensing and near infrared imaging of prostate cancer cells. Anal Chim Acta 2014; 818: 5460. doi: 10.1016/j.aca.2014.01.057.CrossRefGoogle ScholarPubMed
Singh, B R, Singh, B N, Khan, W et al. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials 2012; 33 (23): 57535767. doi: 10.1016/j.biomaterials.2012.04.045.CrossRefGoogle ScholarPubMed
Wu, X, Lui, H, Liu, J et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2002; 21 (1): 4146. doi: 10.1038/nbt764.CrossRefGoogle ScholarPubMed
Chen, C, Sun, S, Gong, Y et al. Quantum dots-based molecular classification of breast cancer by quantitative spectroanalysis of hormone receptors and HER2. Biomaterials 2011; 32 (30): 75927599. doi: 10.1016/j.biomaterials.2011.06.029.CrossRefGoogle ScholarPubMed
Rizvi, S B, Rouhi, S, Taniguchi, S et al. Near-infrared quantum dots for HER2 localization and imaging of cancer cells. Int J Nanomed 2014; 9: 13231337. doi: 10.2147/IJN.S51535.Google ScholarPubMed
Lui, L, Wu, S, Jin, F et al. Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels. Biosens Bioelectron 2016; 80: 300306. doi: 10.1016/j.bios.2016.01.084.Google Scholar
Chen, X, Hu, Z, Wang, W et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for non-small cell lung cancer diagnosis. Int J Cancer 2012, 130 (7): 16201628. doi: 10.1002/ijc.26177.CrossRefGoogle Scholar
Jain, K. Role of nanobiotechnology in the development of personalized medicine. Nanomedicine 2009; 4, 249252. doi: 10.2217/nnm.09.12.CrossRefGoogle ScholarPubMed
Bai, Q, Zhao, Z, Sui, H et al. The preparation and application of dendrimer modified CdTe/CdS near infrared quantum dots for brain cancer cells imaging. Appl Sci 2015; 5 (4): 10761085. doi: 10.3390/app5041076.CrossRefGoogle Scholar
Sheng, Z, Guo, B, Hu, D et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv Mater 2018; 30 (29): 1800766. doi: 10.1002/adma.201800766.CrossRefGoogle Scholar
Fatehi, D, Baral, T N, Abulrob, A. In vivo imaging of brain cancer using epidermal growth factor single domain antibody bioconjugated to near-infrared quantum dots. J Nanosci Nanotechnol 2014; 14 (7): 53555362.10.1166/jnn.2014.9076CrossRefGoogle ScholarPubMed
Voura, E B, Simon, S M, Mattoussi, H et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 2004; 10 (9): 993998. doi: 10.1038/nm1096.CrossRefGoogle ScholarPubMed
Resch-Genger, U, Nann, T, Nitschke, R et al. Quantum dots versus organic dyes as fluorescent labels. Nat Methods 2008; 5 (9): 763775. doi: 10.1038/nmeth.1248.CrossRefGoogle ScholarPubMed
Hsu, C, Chen, C, Yu, H et al. Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy. Biomaterials 2012; 34 (4): 12041212. doi: 10.1016/j.biomaterials.2012.08.044.CrossRefGoogle ScholarPubMed
Shen, Y, Sun, Y, Yan, R et al. Rational engineering of semiconductor QDs enabling remarkable 1O2 production for tumor-targeted photodynamic therapy. Biomaterials 2017; 148: 3140. doi: 10.1016/j.biomaterials.2017.09.026.CrossRefGoogle ScholarPubMed
Singhal, S, Nie, S, Wang, M D. Nanotechnology applications in surgical oncology. Annu Rev Med 2010; 61 (1): 359373. doi: 10.1146/annurev.med.60.052907.094936.CrossRefGoogle ScholarPubMed
Luo, G, Long, J, Zhang, B et al. Quantum dots in cancer therapy. Expert Opin Drug Delivery 2012; 9 (1): 4758. doi: 10.1517/17425247.2012.638624.CrossRefGoogle ScholarPubMed
Hu, S H,Chen, Y W, Hung, W T et al. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 2012; 24 (13): 1748–1745. doi: 10.1002/adma.201104070.CrossRefGoogle ScholarPubMed
Chen, C, Peng, J, Sun, S et al. Tapping the potential of quantum dots for personalized oncology: current status and future perspectives. Nanomedicine 2012; 7: 411428. doi: 10.2217/nnm.12.9.CrossRefGoogle ScholarPubMed
Fazaeli, Y, Zare, H, Karimi, S et al. Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology. Appl Phys A 2017; 123 (8): 19. doi: 10.1007/s00339-017-1125-9.CrossRefGoogle Scholar
Mansur, A A, Mansur, HS, De Carvalho, S M et al. Surface biofunctionalized CdS and ZnS quantum dot nanoconjugates for nanomedicine and oncology: to be or not to be nanotoxic? Int J Nanomed 2016; 11: 46694690. doi: 10.2147/IJN.S115208.CrossRefGoogle ScholarPubMed
Hauck, T S, Anderson, R E, Fischer, H C et al. In vivo quantum-dot toxicity assessment. Small (Weinheim an Der Bergstrasse, Germany) 2010; 6 (1): 138144. doi: 10.1002/smll.200900626.CrossRefGoogle ScholarPubMed
Tang, S, Peng, C, Xu, J et al. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density. Angew Chem Int Ed 2016; 55 (52): 1603916043. doi: 10.1002/anie.201609043.CrossRefGoogle ScholarPubMed
Soo Choi, H, Liu, W, Misra, P et al. Renal clearance of quantum dots. Nat Biotechnol 2007; 25: 11651170. doi: 10.1038/nbt1340.CrossRefGoogle Scholar
Kröger, N, Egl, A, Engel, M et al. Quantum cascade laser-based hyperspectral imaging of biological tissue. J Biomed Opt 2014; 19 (11): 111607. doi: 10.1117/1.JBO.19.11.111607.CrossRefGoogle ScholarPubMed
Kimber, J, Kazarian, S. Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers. Anal Bioanal Chem 2017; 409 (25): 58135820. doi: 10.1007/s00216-017-0574-5.CrossRefGoogle ScholarPubMed
Pilling, M, Henderson, A, Bird, B et al. High-throughput quantum cascade laser (QCL) spectral histopathology: a practical approach towards clinical translation. Faraday Discuss 2016; 187: 135154. doi: 10.1039/C5FD00176E.CrossRefGoogle ScholarPubMed
Kuepper, C, Kallenbach-Thieltges, A, Juette, H et al. Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections. Sci Rep 2018; 8 (1): 7717–7710. doi: 10.1038/s41598-018-26098-w.CrossRefGoogle ScholarPubMed
Pilling, M J, Henderson, A, Gardner, P. Quantum cascade laser spectral histopathology: breast cancer diagnostics using high throughput chemical imaging. Anal Chem 2017; 89 (14): 73487355. doi: 10.1021/acs.analchem.7b00426.CrossRefGoogle ScholarPubMed
Tomasetti, C, Li, L, Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017; 355 (6331): 13301334. doi: 10.1126/science.aaf9011.CrossRefGoogle ScholarPubMed
Davies, P C W. Does quantum mechanics play a non-trivial role in life? BioSystems 2004; 78 (1–3): 6979. doi: 10.1016/j.biosystems.2004.07.001.CrossRefGoogle ScholarPubMed
Shaifur, R, Fahmid, I, Al Mamun, S M et al. Evolution of cancer: a quantum mechanical approach. Eur J Biophys 2014; 2 (4): 3848.Google Scholar
Sugisaki, K, Nakazawa, S, Toyota, K et al. Quantum chemistry on quantum computers: a method for preparation of multiconfigurational wave functions on quantum computers without performing post-Hartree-Fock calculations. 2018. ACS Cent Sci 2018; 5 (1): 167175. doi: 10.1021/acscentsci.8b00788.CrossRefGoogle Scholar
Knill, E. Quantum computing. Nature 2010; 463: 441443. doi: 10.1038/463441a.CrossRefGoogle ScholarPubMed
Kaye, P, Laflamme, R, Mosca, M. Introduction to Quantum Computing. New York: Oxford University Press, 2006.Google Scholar
Drickhamer, D. Future now: five technology developments changing industry as we know it. Ind Week 2011; 260 (11): 2631.Google Scholar
Kassal, I, Whitfield, J D, Perdomo-Ortiz, A et al. Simulating chemistry using quantum computers. Annu Rev Phys Chem 2011; 62 (1): 185207.10.1146/annurev-physchem-032210-103512CrossRefGoogle ScholarPubMed
Beam, A L, Kohane, I S. Big data and machine learning in health care. J Am Med Assoc 2018; 19 (13): 13171318. doi: 10.1001/jama.2017.18391.CrossRefGoogle Scholar
Biamonte, J, Wittek, P, Pancotti, N et al. Quantum machine learning. Nature 2017; 549: 195202.10.1038/nature23474CrossRefGoogle ScholarPubMed
Parsons, D F. Possible medical and biomedical uses of quantum computing. Neuroquantology 2011; 9 (3): 596600.10.14704/nq.2011.9.3.412CrossRefGoogle Scholar
Solenov, D, Brieler, J, Scherrer, J F. The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine. Mo Med 2018; 115 (5): 463467.Google Scholar
Xu, L, Osei, B, Osei, E. A review of radiation genomics: integrating patient radiation response with genomics for personalised and targeted radiation therapy. J Radiother Pract 2018; 112. doi: 10.1017/S1460396918000547.Google Scholar
Degen, C L, Reinhard, F, Cappellaro, P. Quantum sensing. Rev Mod Phys 2017; 89 (3): 035002. doi: 10.1103/RevModPhys.89.035002.CrossRefGoogle Scholar