Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T19:23:13.738Z Has data issue: false hasContentIssue false

0-D-valued fields

Published online by Cambridge University Press:  12 March 2014

Nicolas Guzy*
Affiliation:
Université de Mons-Hainaut, Le Pentagone, Institut de Mathématique, 6. Avenue du Champ de Mars, B-7000 Mons, Belgium. E-mail: Nicolas.Guzy@umh.ac.be

Abstract

In [12]. T. Scanlon proved a quantifier elimination result for valued D-fields in a three-sorted language by using angular component functions. Here we prove an analogous theorem in a different language which was introduced by F. Delon in her thesis. This language allows us to lift the quantifier elimination result to a one-sorted language by a process described in the Appendix. As a byproduct, we state and prove a “positivstellensatz” theorem for the differential analogue of the theory of real-series closed fields in the valued D-field setting.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Delon, F., Quelques propriétés tie corps valués en théorie des modèles. Ph.D. thesis. Université de Paris 7, 1982.Google Scholar
[2]Farré, R., A positivstellensatz for chain-closed fields ℝ((t)) and some related fields, Archives of Mathematics, vol. 57 (1991), pp. 446455.CrossRefGoogle Scholar
[3]Farré, R., Model theory for valued and ordered fields and applications, Ph.D. thesis. Universitat de Catalunya, 1993.Google Scholar
[4]Jacob, B., A nullstellensatz for ℝ((t)). Communications in Algebra, vol. 8 (1980), pp. 10831094.CrossRefGoogle Scholar
[5]Kochen, S., Integer valued rational functions over the p-adic numbers, a p-adic analogue of the theory of real fields. Proceedings of the XII Symposium on Pure Mathematics, 1967, pp. 5773.Google Scholar
[6]Kochen, S., The model theory of local fields, Proceedings of the International Summer Institute and Logic Colloquium (ISILC), (Kiel '74), Lecture Notes in Mathematics, vol. 499, 1974, pp. 384425.Google Scholar
[7]Macintyre, A.. On definable subsets of p-adic fields, this Journal, vol. 41 (1976). no. 3. pp. 605610.Google Scholar
[8]Marker, D., Messmer, M., and Pillay, A., Model theory of fields, Lecture Notes in Logic, vol. 5, 1996.CrossRefGoogle Scholar
[9]Michaux, C., Sur l'élimination des quantificateurs dans les anneaux différentiels, Comptes Rendus de l'Académic des Sciences, Série I, Mathématique, vol. 302 (1986), no. 8, pp. 287290.Google Scholar
[10]Michaux, C., Differential fields and machines over the real numbers and automata, Ph.D. thesis. Université de Mons-Hainaut. 1991.Google Scholar
[11]Ribenboim, P.. Théorie des valuations. Séminaire de Mathématiques Supérieures, No. 9 (Été). vol 1964, Les Presses de l'Université de Montréal. Montréal, Québec. 1968. Deuxième édition multigraphiée.Google Scholar
[12]Scanlon, T., Quantifier elimination for the relative Frobenius. Valuation theory audits applications (Saskatoon '99), Vol. II. Fields Institute Communications Series, vol. 33, 1999, pp. 323352.Google Scholar
[13]Scanlon, T., A model complete theory of valued d-fields, this Journal, vol. 65 (2000), no. 4. pp. 17581784.Google Scholar
[14]Singer, M. F., The model theory of ordered differential fields, this Journal, vol. 43 (1978). no. 1. pp. 8291.Google Scholar