Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T19:18:01.276Z Has data issue: false hasContentIssue false

THE COMPLEXITY OF HOMEOMORPHISM RELATIONS ON SOME CLASSES OF COMPACTA

Published online by Cambridge University Press:  18 June 2020

PAWEŁ KRUPSKI
Affiliation:
DEPARTMENT OF COMPUTER SCIENCE FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY WROCłAW UNIVERSITY OF SCIENCE AND TECHNOLOGYWROCłAW, POLANDE-mail: pawel.krupski@pwr.edu.pl
BENJAMIN VEJNAR
Affiliation:
DEPARTMENT OF MATHEMATICAL ANALYSIS FACULTY OF MATHEMATICS AND PHYSICS CHARLES UNIVERSITYPRAGUE, CZECHIAE-mail: vejnar@karlin.mff.cuni.cz

Abstract

We prove that the homeomorphism relation between compact spaces can be continuously reduced to the homeomorphism equivalence relation between absolute retracts, which strengthens and simplifies recent results of Chang and Gao, and Cieśla. It follows then that the homeomorphism relation of absolute retracts is Borel bireducible with the universal orbit equivalence relation. We also prove that the homeomorphism relation between regular continua is classifiable by countable structures and hence it is Borel bireducible with the universal orbit equivalence relation of the permutation group on a countable set. On the other hand we prove that the homeomorphism relation between rim-finite metrizable compacta is not classifiable by countable structures.

Type
Articles
Copyright
© The Association for Symbolic Logic 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated to the memory of Věra Trnková.

References

REFERENCES

Bestvina, M., Characterizing $ k$ -dimensional universal Menger compacta . Memoirs of the American Mathematical Society, vol. 71 (1988), no. 380.CrossRefGoogle Scholar
Camerlo, R., Darji, U. B., and Marcone, A., Classification problems in continuum theory . Transactions of the American Mathematical Society, vol. 357 (2005), no. 11, pp. 43014328.CrossRefGoogle Scholar
Camerlo, R. and Gao, S., The completeness of the isomorphism relation for countable Boolean algebras . Transactions of the American Mathematical Society, vol. 353 (2001), no. 2, pp. 491518.CrossRefGoogle Scholar
Chang, C. and Gao, S., The complexity of the classification problem of continua . Proceedings of the American Mathematical Society, vol. 145 (2017), no. 3, pp. 13291342.CrossRefGoogle Scholar
Cieśla, T., Completeness of the homeomorphism relation of locally connected continua . Proceedings of the American Mathematical Society, vol. 147 (2019), no. 3, pp. 12691276.CrossRefGoogle Scholar
Cook, H., Continua which admit only the identity mapping onto non-degenerate subcontinua . Fundamenta Mathematicae, vol. 60 (1967), pp. 241249.10.4064/fm-60-3-241-249CrossRefGoogle Scholar
Curtis, D. W., Hyperspaces of finite subsets as boundary sets . Topology and Its Applications, vol. 22 (1986), no. 1, pp. 97107.10.1016/0166-8641(86)90081-7CrossRefGoogle Scholar
Engelking, R., General Topology, Sigma Series in Pure Mathematics, vol. 6, second ed., Heldermann Verlag, Berlin, 1989.Google Scholar
Ferenczi, V., Louveau, A., and Rosendal, C., The complexity of classifying separable Banach spaces up to isomorphism . Journal of the London Mathematical Society, vol. 79 (2009), no. 2, pp. 323345.CrossRefGoogle Scholar
Gao, S., Invariant Descriptive Set Theory , Pure and Applied Mathematics (Boca Raton), vol. 293, CRC Press, Boca Raton, FL, 2009.Google Scholar
Gao, S. and Kechris, A. S., On the classification of Polish metric spaces up to isometry . Memoirs of the American Mathematical Society, vol. 161 (2003), no. 766, p. viii+78.CrossRefGoogle Scholar
Gladdines, H. and van Mill, J., Hyperspaces of Peano continua of Euclidean spaces . Fundamenta Mathematicae, vol. 142 (1993), no. 2, pp. 173188.Google Scholar
Hjorth, G., Classification and Orbit Equivalence Relations , Mathematical Surveys and Monographs, vol. 75, American Mathematical Society, Providence, RI, 2000.Google Scholar
Illanes, A. and Nadler, S. B. Jr, Hyperspaces: Fundamentals and Recent Advances , Monographs and Textbooks in Pure and Applied Mathematics, vol. 216, Marcel Dekker, Inc., New York, 1999.Google Scholar
Kanovei, V., Borel Equivalence Relations: Structure and Classification , University Lecture Series, vol. 44, American Mathematical Society, Providence, RI, 2008.10.1090/ulect/044CrossRefGoogle Scholar
Kechris, A. S., Classical Descriptive Set Theory , Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995.CrossRefGoogle Scholar
Knaster, B. and Reichbach, M., Notion d’homogénéité et prolongements des homéomorphies . Fundamenta Mathematicae, vol. 40 (1953), pp. 180193.10.4064/fm-40-1-180-193CrossRefGoogle Scholar
Krasinkiewicz, J., On a method of constructing ANR-sets. An application of inverse limits . Fundamenta Mathematicae, vol. 92 (1976), no. 2, pp. 95112.10.4064/fm-92-2-95-112CrossRefGoogle Scholar
Kuratowski, K., Sur l’espace des fonctions partielles . Annali di Matematica Pura ed Applicata, vol. 40 (1955), no. 4, pp. 6167.CrossRefGoogle Scholar
Kuratowski, K., Sur une méthode de métrisation complète de certains espaces d’ensembles compact . Fundamenta Mathematicae, vol. 43 (1956), pp. 114138.10.4064/fm-43-1-114-138CrossRefGoogle Scholar
Kuratowski, K. and Ryll-Nardzewski, C., A general theorem on selectors . Bulletin L’Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 13 (1965), pp. 397403.Google Scholar
Melleray, J., Computing the complexity of the relation of isometry between separable Banach spaces . Mathematical Logic Quarterly, vol. 53 (2007), no. 2, pp. 128131.CrossRefGoogle Scholar
Motto Ros, L., Can we classify complete metric spaces up to isometry? . Bolletino dell Unione Matematica Italiana, vol. 10 (2017), no. 3, pp. 369410.CrossRefGoogle Scholar
Nadler, S. B. Jr, An Introduction: Continuum Theory , Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992.Google Scholar
Pultr, A. and Trnková, V., Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories , North-Holland Mathematical Library, vol. 22, North-Holland Publishing Co., Amsterdam/New York, 1980.Google Scholar
Ryll-Nardzewski, C., On a Freedman’s problem . Fundamenta Mathematicae, vol. 57 (1965), pp. 273274.10.4064/fm-57-3-273-274CrossRefGoogle Scholar
Sabok, M., Completeness of the isomorphism problem for separable C*-algebras . Inventiones Mathematicae, vol. 204 (2016), no. 3, pp. 833868.CrossRefGoogle Scholar
van Mill, J., The Infinite-Dimensional Topology of Function Spaces , North-Holland Mathematical Library, vol. 64, North-Holland Publishing Co., Amsterdam, 2001.Google Scholar
Thomas Whyburn, G., Analytic topology , American Mathematical Society Colloquium Publications, vol. 28, American Mathematical Society, New York, 1942.Google Scholar
Zielinski, J., The complexity of the homeomorphism relation between compact metric spaces . Advances in Mathematics, vol. 291 (2016), pp. 635645.CrossRefGoogle Scholar