Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T16:31:01.179Z Has data issue: false hasContentIssue false

Failure of Interpolation in Constant Domain Intuitionistic Logic

Published online by Cambridge University Press:  12 March 2014

Grigori Mints
Affiliation:
Department of Philosophy, Stanford University, Stanford, CA, 94305, USA, E-mail: gmints@stanford.edu
Grigory Olkhovikov
Affiliation:
Department of Philosophy, Ural Federal University, Ekaterinburg 620083, Russia, E-mail: grigory.olkhovikov@usu.ru
Alasdair Urquhart
Affiliation:
Department of Computer Science, University of Toronto, Toronto, Ontario, M5S 1A1, Canada, E-mail: urquhart@cs.toronto.edu

Abstract

This paper shows that the interpolation theorem fails in the intuitionistic logic of constant domains. This result refutes two previously published claims that the interpolation property holds.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Beth, Evert Willem, Semantic construction of intuitionistic logic, Koninklijke Nederlandse Akademie van Wetenschappen, Mededelingen, Nieuwe Reeks, vol. 19 (1956), pp. 357388.Google Scholar
[2] Beth, Evert Willem, The foundations of mathematics: a study in the philosophy of science, North Holland, Amsterdam, 1959.Google Scholar
[3] Blackburn, Patrick, de Rijke, Maarten, and Venema, Yde, Modal logic, Cambridge Tracts in Theoretical Computer Science 53, Cambridge University Press, 2001.CrossRefGoogle Scholar
[4] Blackburn, Patrick, van Benthem, Johan, and Wolter, Frank, Handbook of modal logic, Elsevier, 2007.Google Scholar
[5] Fine, Kit, Failures of the interpolation lemma in quantified modal logics, this Journal, vol. 44 (1979), pp. 201206.Google Scholar
[6] Gabbay, Dov M., Montague type semantics for nonclassical logics. I, Technical report, Hebrew University of Jerusalem, 1969.Google Scholar
[7] Gabbay, Dov M., Craig interpolation theorem for intuitionistic logic and extensions Part III, this Journal, vol. 42 (1977), pp. 269271.Google Scholar
[8] Gabbay, Dov M. and Maksimova, Larisa, Interpolation and definability: Modal and intuitionistic logics, Oxford University Press, 2005.Google Scholar
[9] Görnemann, Sabine, A logic stronger than intuitionism, this Journal, vol. 36 (1971), pp. 249261.Google Scholar
[10] Grzegorczyk, Andrzej, A philosophically plausible formal interpretation of intuitionistic logic, Indagationes Mathematicae, vol. 26 (1964), pp. 596601.CrossRefGoogle Scholar
[11] Klemke, Dieter, Ein Henkin-Beweis für die Vollständigkeit eines Kalküls relativ zur Grzegorczyk-Semantik, Archiv für Mathematische Logik und Grundlagenforschung, vol. 14 (1971), pp. 148161.CrossRefGoogle Scholar
[12] Kripke, Saul A., Semantical analysis of intuitionistic logic. I, Formal systems and recursive functions, 1965, Proceedings of the Eighth Logic Colloquium, Oxford, 07 1963, pp. 92130.Google Scholar
[13] Kripke, Saul A., Review of [5], this Journal, vol. 44 (1983), pp. 486488.Google Scholar
[14] López-Escobar, E. G. K., On the interpolation theorem for the logic of constant domains, this Journal, vol. 46 (1981), pp. 8788.Google Scholar
[15] López-Escobar, E. G. K., A second paper “On the interpolation theorem for the logic of constant domains”, this Journal, vol. 48 (1983), pp. 595599.Google Scholar
[16] Mints, Grigori, A short introduction to intuitionistic logic, Kluwer Publishers, 2000.Google Scholar
[17] Olkhovikov, Grigory K., Intuitionistic predicate logic of constant domains does not have Beth property, ArXiv e-print http://adsabs.harvard.edu/abs/2012arXiv1204.5788O, 04 2012.Google Scholar
[18] Olkhovikov, Grigory K., Model-theoretic characterization of predicate intuitionistic formulas, ArXiv e-print http://adsabs.harvard.edu/abs/2012arXiv1202.1195O, 02 2012.Google Scholar
[19] Takeuti, Gaisi, Proof theory, North-Holland, 1987.Google Scholar
[20] van Benthem, Johan, Frame correspondences in modal predicate logic, Proofs, categories and computations: Essays in honor of Grigori Mints, College Publications, London, 2010.Google Scholar