Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T18:45:57.661Z Has data issue: false hasContentIssue false

Note on deducibility and many-valuedness

Published online by Cambridge University Press:  12 March 2014

Ryszard Wójcicki*
Affiliation:
Polish Academy of Science, Section of Logic, Szewska 36, 50–139 Wrocław, Poland

Extract

Some of the theorems contained in the interesting and incisive paper [*] (D. J. Shoesmith and T. J. Smiley, Deducibility and many-valuedness, this Journal, vol. 36 (1970), pp. 610–622) are strongly connected with some earlier results, especially those presented in the paper of Łoś and Suszko [2]. The lack of appropriate bibliographical references in [*] shows that some results which have been obtained relatively long ago are, unfortunately, not so widely known as one might expect. The main task of this short note is to inform briefly on a few results and problems related to those examined in [*].

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cohn, P.M., Universal algebra, Harper and Row, New York, 1965.Google Scholar
[2]Łoś, J. and Suszko, R., Remarks on sentential logics, Koninklijke Nederlandse Akademie van Wetenschappen. Proceedings = Indagationes Mathematicae, vol. 20 (1958), pp. 177183.Google Scholar
[3]Pogorzelski, W. A., Structural completeness of the propositional calculus, Bulletin de l'Académié Polonaise des Sciences. Série des Sciences Matématiques, Astronomiques et Physiques, vol. 19 (1971), pp. 349351.Google Scholar
[4]Prucnal, T., On structural completeness of some pure implicational propositional calculi, Stadia Logica, vol. 30 (to appear).Google Scholar
[5]Prucnal, T.Structural completeness of Lewis's system S5, Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Matématiques, Astronomiques et Physiques, vol. 20 (1972), pp. 101103.Google Scholar
[6]Rasiowa, H. and Sikorski, R., The mathematics. of metamathematics, PWN—Polish Scientific Publishers, Warsaw, 1968.Google Scholar
[7]Suszko, R., Concerning the method of logical schemes, the notion of logical calculus and the role of consequence relations, Stadia Logica, vol. 11 (1961), pp. 185214.CrossRefGoogle Scholar
[8]Tarski, A., Logic, semantics, metamathematics, Clarendon Press, Oxford, 1956.Google Scholar
[9]Tokarz, M., On structural completeness of Łukasiewicz logics, Studia Logica, vol. 30 (to appear).Google Scholar
[10]Ulrich, D., Deducibility results for some classes of propositional calculi, this Journal, vol. 35 (1970), pp. 353354. Abstract.Google Scholar
[11]Wójcicki, R., Logical matrices strongly adequate for structural sentential calculi, Bulletinde l'Académic Polonaise des Sciences. Série des Sciences Matématiques, Astronomiques et Physiques, vol. 17 (1969), pp. 333335.Google Scholar
[12]Wójcicki, R., Some remarks on the consequence operation in sentential logics, Fundamenta Mathematicae, vol. 68 (1970), pp. 269279.CrossRefGoogle Scholar
[13]Wójcicki, R., On matrix representations of consequence operations of Łukasiewicz sentential calculi, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 19 (1970), pp. 239247.CrossRefGoogle Scholar
[14]Wójcicki, R., Matrix approach in methodology of sentential calculi, Studia Logica, vol. 32 (1974), pp. 739.CrossRefGoogle Scholar
[15]Wójcicki, R., The logics stronger than Łukasiewicz's three valued sentential calculus. The notion of degree of maximality versus the notion of degree of completeness, Studia Logica, vol. 33 (1974) (to appear).CrossRefGoogle Scholar