Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T18:13:25.878Z Has data issue: false hasContentIssue false

On the non-confluence of cut-elimination

Published online by Cambridge University Press:  12 March 2014

Matthias Baaz
Affiliation:
Institute of Discrete Mathematics and Geometry (E104), Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria, E-mail: baaz@logic.at
Stefan Hetzl
Affiliation:
Laboratoire Preuves, Programmes et Systèmes (PPS), Université Paris Diderot– Paris 7, 175 Rue du Chevaleret, 75013 Paris, France, E-mail: stefan.hetzl@pps.jussieu.fr

Abstract

We study cut-elimination in first-order classical logic. We construct a sequence of polynomial-length proofs having a non-elementary number of different cut-free normal forms. These normal forms are different in a strong sense: they not only represent different Herbrand-disjunctions but also differ in their prepositional structure.

This result illustrates that the constructive content of a proof in classical logic is not uniquely determined but rather depends on the chosen method for extracting it.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Andrews, Peter B., Theorem proving via general matings, Journal of the ACM, vol. 28 (1981), no. 2, pp. 193214.CrossRefGoogle Scholar
[2]Baader, Franz and Snyder, Wayne, Unification theory, Handbook of automated reasoning (Robinson, Alan and Voronkov, Andrei, editors), Elsevier, 2001, pp. 445533.CrossRefGoogle Scholar
[3]Gentzen, Gerhard, Untersuchungen über das logische Schließen, Mathematische Zeitschrift, vol. 39 (19341935), pp. 176-210, 405431.CrossRefGoogle Scholar
[4]Gentzen, Gerhard, Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, vol. 112 (1936), pp. 493565.CrossRefGoogle Scholar
[5]Gerhardy, Philipp and Kohlenbach, Ulrich, Extracting Herbrand disjunctions by functional interpretation, Archive for Mathematical Logic, vol. 44 (2005), pp. 633644.CrossRefGoogle Scholar
[6]Girard, Jean-Yves, Proof theory and logical complexity, Elsevier, 1987.Google Scholar
[7]Girard, Jean-Yves, Taylor, Paul, and Lafont, Yves, Proofs and types, Cambridge University Press, 1989.Google Scholar
[8]Gödel, Kurt, Über eine noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica, vol. 12 (1958), pp. 280287.CrossRefGoogle Scholar
[9]Hilbert, David and Bernays, Paul, Grundlagen der Mathematik II, Springer, 1939.Google Scholar
[10]Kohlenbach, Ulrich, Applied proof theory: Proof interpretations and their use in mathematics, Springer, 2008.Google Scholar
[11]Krajíček, Jan and Pudlák, Pavel, The number of proof lines and the size of proofs in first order logic, Archive for Mathematical Logic, vol. 27 (1988), pp. 6984.CrossRefGoogle Scholar
[12]Orevkov, V. P., Lower bounds for increasing complexity of derivations after cut elimination, Zapiski Nauchnykh Seminarov Leningradskogo Otdelemya Matematicheskogo Instituta, vol. 88 (1979), pp. 137161.Google Scholar
[13]Orevkov, V. P., Reconstitution of the proof from its scheme (russian abstract), 8th Soviet Conference on Mathematical Logic, 1984.Google Scholar
[14]Orevkov, V. P., Reconstruction ofa proofby its analysis, Doklady Akademii Nauk, vol. 293 (1987), no. 3, pp. 313316, (russian).Google Scholar
[15]Pudlák, Pavel, The lengths of proofs, Handbook of proof theory (Buss, Sam, editor), Elsevier, 1998, pp. 547637.CrossRefGoogle Scholar
[16]Statman, Richard, Lower bounds on Herbrand's theorem, Proceedings of the American Mathematical Society, vol. 75 (1979), pp. 104107.Google Scholar
[17]Urban, Christian, Classical logic and computation, Ph.D. thesis, University of Cambridge, 10 2000.Google Scholar
[18]Urban, Christian and Bierman, Gavin, Strong normalization of cut-elimination in classical logic, Fundamenta Informaticae, vol. 45 (2000), pp. 123155.Google Scholar