Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T20:46:15.187Z Has data issue: false hasContentIssue false

ON THE SYMBIOSIS BETWEEN MODEL-THEORETIC AND SET-THEORETIC PROPERTIES OF LARGE CARDINALS

Published online by Cambridge University Press:  29 June 2016

JOAN BAGARIA
Affiliation:
ICREA (INSTITUCIÓ CATALANA DE RECERCA I ESTUDIS AVANÇATS) AND DEPARTAMENT DE LÒGICA, HISTÒRIA I FILOSOFIA DE LA CIÈNCIA UNIVERSITAT DE BARCELONA MONTALEGRE 6, 08001BARCELONA CATALONIA (SPAIN)E-mail:joan.bagaria@icrea.cat
JOUKO VÄÄNÄNEN
Affiliation:
DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF HELSINKIFINLAND INSTITUTE OF LOGIC, LANGUAGE AND COMPUTATION UNIVERSITY OF AMSTERDAM THE NETHERLANDSE-mail:jouko.vaananen@cc.helsinki.fi

Abstract

We study some large cardinals in terms of reflection, establishing new connections between the model-theoretic and the set-theoretic approaches.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagaria, J., C (n) -Cardinals . Archive for Mathematical Logic, vol. 51 (2012), pp. 213240.CrossRefGoogle Scholar
Barwise, J., and Feferman, S., editors, Model-theoretic logics, Perspectives in Mathematical Logic, Springer-Verlag, New York, 1985.Google Scholar
Farah, I., and Larson, P., Absoluteness for universally Baire sets and the uncountable. I . In Set theory: Recent trends and applications, vol. 17, Quaderni di Matematica, Department of Mathematics, Seconda Università degli Studi di Napoli, Caserta, 2006, pp. 4792.Google Scholar
Fuhrken, G., Skolem-type normal forms for first-order languages with a generalized quantifier . Fundamenta Mathematicae, vol. 54 (1964), pp. 291302.Google Scholar
Levy, A.,Basic Set Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, Heidelberg, New-York, 1979.Google Scholar
Lindström, P., First order predicate logic with generalized quantifiers . Theoria, vol. 32, pp. 186195, 1966.Google Scholar
Magidor, M., On the role of supercompact and extendible cardinals in logic . Israel Journal of Mathematics, vol. 10 (1971), pp. 147157.Google Scholar
Magidor, M., and Väänänen, J. A., On Löwenheim-Skolem-Tarski numbers for extensions of first order logic . Journal of Mathematical Logic, vol. 11 (2011), no. 1, pp. 87113.Google Scholar
Makowsky, J. A., Shelah, Saharon, and Stavi, Jonathan, D-logics and generalized quantifiers . Annals of Mathematical Logic, vol. 10 (1976), no. 2, pp. 155192.Google Scholar
Mostowski, A., On a generalization of quantifiers . Fundamenta Mathematicae, vol. 44 (1957), pp. 1236.CrossRefGoogle Scholar
Pinus, A. G., Cardinality of models for theories in a calculus with a Härtig quantifier . Siberian Mathematical Journal, vol. 19 (1978), no. 6, pp. 949955.Google Scholar
Shelah, Saharon, Models with second-order properties. II. Trees with no undefined branches . Annals of Mathematics, vol. 14 (1978), no. 1, pp. 7387.Google Scholar
Stavi, J., and Väänänen, J. A., Reflection Principles for the Continuum , Logic and Algebra (Zhang, Yi, editor), vol. 302, AMS, Contemporary Mathematics, pp. 5984, 2002.Google Scholar
Väänänen, J., Abstract Logic and Set Theory. I. Definability , Logic Colloquium 78 (Boffa, M., van Dalen, D., and McAloon, K., editors), North-Holland, Amsterdam, 1979.Google Scholar