Hostname: page-component-857557d7f7-bkbbk Total loading time: 0 Render date: 2025-12-03T01:22:44.039Z Has data issue: false hasContentIssue false

PRESERVATION THEOREMS FOR AE-SENTENCES

Published online by Cambridge University Press:  10 September 2025

DIEGO CASTAÑO*
Affiliation:
DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD NACIONAL DEL SUR BAHÍA BLANCA B8000 ARGENTINA
MIGUEL CAMPERCHOLI
Affiliation:
FACULTAD DE MATEMÁTICA ASTRONOMÍA Y FÍSICA (FA.M.A.F.) UNIVERSIDAD NACIONAL DE CÓRDOBA CÓRDOBA X5000 ARGENTINA E-mail: miguel.campercholi@unc.edu.ar E-mail: dvaggione@gmail.com
DIEGO VAGGIONE
Affiliation:
FACULTAD DE MATEMÁTICA ASTRONOMÍA Y FÍSICA (FA.M.A.F.) UNIVERSIDAD NACIONAL DE CÓRDOBA CÓRDOBA X5000 ARGENTINA E-mail: miguel.campercholi@unc.edu.ar E-mail: dvaggione@gmail.com

Abstract

An AE-sentence is a sentence of the form $\forall x_1\ldots x_n \exists ! z_1\ldots z_m \, \alpha (\mathbf {x},\mathbf {z})$, where $\alpha $ is a finite conjunction of equations. Given an arbitrary quasivariety $\mathcal {Q}$, we give a purely semantical characterization of when a class $\mathcal {K} \subseteq \mathcal {Q}$ with $S(\mathcal {K}) = \mathcal {Q}$ is axiomatizable relative to $\mathcal {Q}$ by AE-sentences. Along the way, we also characterize axiomatizability by generalized AE-sentences, which are of the form described above, except that both the number of existential quantifiers and of equations in $\alpha $ are allowed to be infinite. The article concludes with an analysis of how the main theorems can be improved in the context of finitely generated quasivarieties.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Caicedo, X., Implicit connectives of algebraizable logics . Studia Logica , vol. 78 (2004), pp. 155170.Google Scholar
Caicedo, X., Campercholi, M., Kearnes, K. A., Terraf, P. S., Szendrei, A., and Vaggione, D., Every minimal dual discriminator variety is minimal as a quasivariety . Algebra Universalis , vol. 82 (2021), no. 2, p. 36.Google Scholar
Campercholi, M., Dominions and primitive positive functions . The Journal of Symbolic Logic , vol. 83 (2018), no. 1, pp. 4054.Google Scholar
Campercholi, M., Castaño, D. N., Varela, J. P. D., and Gispert, J., Algebraic expansions of logics . The Journal of Symbolic Logic , vol. 88 (2023), no. 1, pp. 7492.Google Scholar
Campercholi, M. and Vaggione, D. J., Algebraically expandable classes . Algebra Universalis , vol. 61 (2009), no. 2, pp. 151186.Google Scholar
Campercholi, M. and Vaggione, D. J., Algebraic functions . Studia Logica , vol. 98 (2011), nos. 1–2, pp. 285306.Google Scholar
Campercholi, M. and Vaggione, D. J., Implicit definition of the quaternary discriminator . Algebra Universalis , vol. 68 (2012), no. 1, pp. 116.Google Scholar
Isbell, J. R., Epimorphisms and dominions , Proceedings of the Conference on Categorical Algebra (S. Eilenberg, D. K. Harrison, S. MacLane, H. Röhrl, editors), Springer, Berlin, Heidelberg, 1966, pp. 232246.Google Scholar
Kueker, D., Core structures for theories . Fundamenta Mathematicae , vol. 89 (1975), no. 2, pp. 155171.Google Scholar
Rabin, M., Characterization of convex systems of axioms . Notices of the American Mathematical Society , vol. 7 (1960), p. 503.Google Scholar
Rabin, M. O., Classes of models and sets of sentences with the intersection property . Annales de la faculté des Sciences de l’université de Clermont. Mathématiques , vol. 7 (1962), no. 1, pp. 3953.Google Scholar
Robinson, A., On the Metamathematics of Algebra , Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1951.Google Scholar
Robinson, A., Complete Theories , North-Holland Publishing Co., Amsterdam, 1956.Google Scholar
Vaggione, D. J., Infinitary baker-Pixley theorem . Algebra Universalis , vol. 79 (2018), no. 3, Article no. 67, 14 pp.Google Scholar
Von Neumann, J., On regular rings . Proceedings of the National Academy of Sciences , vol. 22 (1936), no. 12, pp. 707713.Google Scholar