Published online by Cambridge University Press: 12 March 2014
When studying the model theory of
the first observation is that the integers can be defined as
Since ∂exp is subject to all of Gödel's phenomena, this is often also the last observation. After Wilkie proved that ℝexp is model complete, one could ask the same question for ∂exp, but the answer is negative.
Proposition 1.1. ∂expis not model complete
Proof. If ∂exp is model complete, then every definable set is a projection of a closed set. Since ∂ is locally compact, every definable set is Fσ. The same is true for the complement, so every definable set is also Gδ. But, since ℤ is definable, ℚ is definable and a standard corollary of the Baire Category Theorem tells us that ℚ is not Gδ.
Still, there are several interesting open questions about ∂exp.
• Is ℝ definable in ∂exp?
• (quasiminimality) Is every definable set countable or co-countable? (Note that this is true in the structure (∂, ℤ, +, ·) where we add a predicate for ℤ).
• (Mycielski) Is there an automorphism of ∂exp other than the identity and complex conjugation?1
A positive answer to the first question would tell us that ∂exp is essentially second order arithmetic, while a positive answer to the second would say that integers are really the only obstruction to a reasonable theory of definable sets.
A fascinating, novel approach to ∂exp is provided by Zilber's [6] pseudoexponentiation. Let L be the language {+, · E, 0, 1}.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.