Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T18:47:29.308Z Has data issue: false hasContentIssue false

Sous-groupes periodiques d'un groupe stable

Published online by Cambridge University Press:  12 March 2014

Bruno Poizat
Affiliation:
Mathématiques-Bâtiment 101, Université Claude Bernard (Lyon-I), F-69622-Villeurbanne-Cedex-, France, E-mail: poizat@lan1.univ-lyon1.fr
Frank Wagner
Affiliation:
Mathematisches Institut, Universitat Freiburg, Albertstrasse 23B 7800 Freiburg, Germany, E-mail: frwagner@ibm.ruf.uni-freiburg.de

Abstract

We develop a Sylow theory for stable groups satisfying certain additional conditions (2- finiteness, solvability or smallness) and show that their maximal p-subgroups are locally finite and conjugate. Furthermore, we generalize a theorem of Baer-Suzuki on subgroups generated by a conjugacy class of p-elements.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baudish, Andreas [1989], On superstable groups, Seminarbericht n° 104, Humboldt Universitat zu Berlin, pp. 1842.Google Scholar
Borovik, Aleksandr Vasilievich [1990], La théorie de Sylow des groupes de rang de Morley fini, Siberian Mathematical Journal, vol. 30, no. 6, pp. 5257.(en russe)CrossRefGoogle Scholar
Borovik, Aleksandr Vasilievich and Poizat, Bruno Petrovich [1990], Tores et p-groupes, this Journal, vol. 55, pp.478491.Google Scholar
Brown, K. S. [1982], Cohomology of groups, Springer-Verlag, New York.CrossRefGoogle Scholar
Bryant, Roger M. [1979], Groups with minimal condition on centralizers, Journal of Algebra, vol. 60, p. 371383.CrossRefGoogle Scholar
Gorenstein, Daniel [1968], Finite groups, Harper and Row, New York.Google Scholar
Kegel, Otto [1989], Four lectures on Sylow theory locally finite groups, Group theory (Cheng, Nah and Leong, Yu Kaiang, editors), Walter de Gruyter, Berlin.Google Scholar
Poizat, Bruno [1987], Groupes stables, Nur al-Mantiq wal-Ma'rifah, Villeurbanne.Google Scholar
Wagner, Frank [1990], Stable groups and generic types, D. Phil. thesis, Oxford University.Google Scholar
Wagner, Frank [1990a], Subgroups of stable groups, this Journal, vol. 55, pp. 151156.Google Scholar
Wagner, Frank [1991], Small stable groups, this Journal, vol. 56, pp. 10261037.Google Scholar
Wehrfritz, B. A. F. [1973], Infinite linear groups, Springer-Verlag, Berlin.CrossRefGoogle Scholar