Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T12:14:18.150Z Has data issue: false hasContentIssue false

Accessible categories, saturation and categoricity

Published online by Cambridge University Press:  12 March 2014

Jiří Rosický*
Affiliation:
Masaryk University, Janáčkovo Nám. 2A, 662 95 Brno, Czech Republic, E-mail: rosickymath.muni.cz

Abstract

Model-theoretic concepts of saturation and categoricity are studied in the context of accessible categories. Accessible categories which are categorical in a strong sense are related to categories of M-sets (M is a monoid). Typical examples of such categories are categories of λ-saturated objects.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adámek, J. and Rosický, J., Locally presentable and accessible categories, Cambridge University Press, 1994.CrossRefGoogle Scholar
[2]Droste, M. and Göbel, R., A categorical theorem on universal objects and its application in abelian group theory and computer science, Contemporary Mathematics, vol. 131 (1992), pp. 4971.CrossRefGoogle Scholar
[3]Fakir, S., Objects algébriquement clos et injectifs dans les catégories localement présentables, Bulletin de la Société Mathématique de France, vol. 42 (1975).Google Scholar
[4]Gabriel, P. and Ulmer, F., Lokal Präsentierbare Kategorien, Lecture Notes in Mathematics, no. 221, Springer-Verlag, Berlin, 1971.CrossRefGoogle Scholar
[5]Hodges, W., Model theory, Cambridge University Press, Cambridge, 1993.CrossRefGoogle Scholar
[6]Lair, C., Catégories modélables et catégories esquissables, Cahiers de Topologie et Géométrie Différentielle Catégoriques, vol. 12 (1981), pp. 147185.Google Scholar
[7]Makkai, M. and Paré, R., Accessible categories: the foundation of categorical model theory, Contemporary Mathematics, vol. 104 (1989).CrossRefGoogle Scholar