Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T17:37:38.709Z Has data issue: false hasContentIssue false

Alfred Tarski's work in model theory

Published online by Cambridge University Press:  12 March 2014

Robert L. Vaught*
Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720

Extract

We will consider Tarski's work in pure model theory and classical logic. His work in applied model theory—the model theory of various special theories—is discussed by Doner and van den Dries [1987], and McNulty [1986]. (However, the separation of “pure” and “applied” only becomes natural as the subjects mature; so we shall discuss applied model theory at least to some extent in Tarski's earlier work.)

Alfred Tarski (1901–1983) was awarded a Ph.D. in mathematics at Warsaw University in 1924. His teachers included the two leaders of the renowned Polish logic school, the logician-philosophers L. Leśniewski and J. Łukasiewicz. (Very soon Tarski was recognized as the third leader of the school.) Another teacher was the philosopher T. Kotarbiński, to whom Tarski dedicated his collected papers [56m]. Leśniewski was Tarski's thesis advisor; he transmitted to Tarski his interests in the metalanguage and in the theory of definition. Tarski's thesis ([23a], [24]) was about protothetic—the sentential calculus augmented by quantifiable variables ranging over truth functions. Its main result was that all the connectives are definable using only ↔ and ∀. By the same year, 1924, Tarski also had begun his prolific writings in set theory, and had discovered together with S. Banach, the leader of the Polish mathematicians, their famous “paradox” [24d] in measure theory. (For details see Lévy [1987].)

In 1927-29 Tarski held a seminar at Warsaw University on results he obtained in 1926-28. The seminar lay at the heart of what is now called model theory. The brief history of model theory up to that time had begun with the paper of L. Löwenheim [1915].

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addison, J. W. [1957] Hierarchies and the axiom of constructibility, Summaries of talks presented at the summer institute for symbolic logic, Cornell University, 1957, 2nd ed., Communications Research Division, Institute for Defense Analyses, Princeton, New Jersey, 1960, pp. 355362.Google Scholar
Addison, J. W. [1965] The undefinability of the definable, Notices of the American Mathematical Society, vol. 12, pp. 347348 (abstract 622-71).Google Scholar
Beth, E. [1953] On Padoa's method in the theory of definition, Koninklijke Nederlandse Akademie tan Wetenschappen, Proceedings, Series A, vol. 56 = Indagationes Mathematicae, vol. 15, pp. 330339.Google Scholar
Birkhoff, Garrett [1935] On the structure of abstract algebras, Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 433454.CrossRefGoogle Scholar
Blok, W. J. and Pigozzi, D. L. [1987] this Journal, vol. 52 (to appear).Google Scholar
Chang, C. C. and Keisler, H. J. [1973] Model theory, North-Holland, Amsterdam.Google Scholar
Doner, J. and van den Dries, L. [1987] this Journal, vol. 52 (to appear).Google Scholar
Etchemendy, J. [1987] Tarski on truth and logical consequence, this Journal, vol. 52 (to appear).Google Scholar
Fraïssé, R. [1954] Sur quelques classifications des systèmes de relations, Publications Scientifiques de l'Université d'Alger, Série A: Sciences Mathématiques, vol. 1, pp. 35182. (Also Thèse, Université de Paris, Imprimerie Durand, Chartres, 1955.)Google Scholar
Frayne, T., Morel, A. and Scott, D. [1958] Reduced direct products, Notices of the American Mathematical Society, vol. 5, p. 674 (abstract 550-9).Google Scholar
Frayne, T., Morel, A. and Scott, D. [1962] Reduced direct products, Fundamenta Mathematicae, vol. 51, pp. 195228.CrossRefGoogle Scholar
Frayne, T. and Scott, D. [1958] Model-theoretic properties of reduced products, Notices of the American Mathematical Society, vol. 5, p. 675 (abstract 550-10).Google Scholar
Gödel, K. [1930] Die Vollständigkeit der Axiome des logischen Funktionenkalküls, Monatshefte für Mathematik und Physik, vol. 37, pp. 349360.CrossRefGoogle Scholar
Gödel, K. [1931] Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I, Monatshefte für Mathematik und Physik, vol. 38, pp. 173198.Google Scholar
Gödel, K. [1934] Review of Skolem [1933], Zentralblatt für Mathematik und ihre Grenzgebiete, vol. 7, pp. 193194.Google Scholar
Hanf, W. [1964] Incompactness in languages with infinitely long expressions, Fundamenta Mathematicae, vol. 53, pp. 309324.CrossRefGoogle Scholar
Hanf, W. and Scott, D. [1961] Classifying inaccessible cardinals, Notices of the American Mathematical Society, vol. 8, p. 445 (abstract 61T-240.)Google Scholar
Henkin, L. [1949] The completeness of the first-order functional calculus, this Journal, vol. 14, pp. 159166.Google Scholar
Jónsson, B. [1986] The contributions of Alfred Tarski to general algebra, this Journal, vol. 51, pp. 883889.Google Scholar
Karp, C. [1965] Languages with expressions of infinite length, North-Holland, Amsterdam.Google Scholar
Keisler, H. J. [1961] Ultraproducts and elementary classes, Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, Series A, vol. 64 = Indagationes Mathematicae, vol. 23, pp. 477495.Google Scholar
Kleene, S. C. [1938] On notation for ordinal numbers, this Journal, vol. 3, pp. 150155.Google Scholar
Kreisel, G. [1957] Independent recursive axiomatization, this Journal, vol. 22, p. 109.Google Scholar
Kuratowski, C. [1937] Les types d'ordre définissables et les ensembles boreliens, Fundamenta Mathematicae, vol. 28, pp. 97100.CrossRefGoogle Scholar
Langford, C. H. [1926] Some theorems on deducibility, Annals of Mathematics, ser. 2, vol. 28, pp. 1640.CrossRefGoogle Scholar
Langford, C. H. [1927] Theorems on deducibility, Annals of Mathematics, ser. 2, vol. 29, pp. 459471.Google Scholar
Lévy, A. [1987] Alfred Tarski's contributions to set theory, this Journal, vol. 52 (to appear).Google Scholar
Łoś, J. [1955] Quelques remarques, théorèmes et problèmes sur les classes définissables d'algèbres, Mathematical interpretation of formal systems, North-Holland, Amsterdam, pp. 98113.CrossRefGoogle Scholar
Łoś, J. [1955a] On the extending of models. I, Fundamenta Mathematicae, vol. 42, pp. 3854.CrossRefGoogle Scholar
Löwenheim, L. [1915] Über Möglichkeiten im Relativkalkül, Mathematische Annalen, vol. 76, pp. 447470.CrossRefGoogle Scholar
Lyndon, R. [1950] The representation of relational algebras, Annals of Mathematics, ser. 2, vol. 51, pp. 707729.CrossRefGoogle Scholar
McNulty, G. F. [1986] Alfred Tarski and undecidable theories, this Journal, vol. 51, pp. 890898.Google Scholar
Makkai, M. [1964] On PCΔ-classes in the theory of models, A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei, ser. A, vol. 9, pp. 159–194, 601602.Google Scholar
Mal'cev, A. [1936] Untersuchungen aus dem Gebiete der mathematischen Logik, Matematičeskiǐ Sbornik, vol. 1 (43), pp. 323336.Google Scholar
Mal'cev, A. [1941] On a general method for obtaining local theorems in group theory, Ivanovskiǐ Gosudarstvennyǐ Pedagogičeskiǐ Institut, Učenye Zapiski, Fiziko-Matematičeskie Nauki, vol. 1, pp. 39 (Russian); English transl., Chapter II in A. I.|Mal'cev, The metamathematics of algebraic systems. Collected papers: 1936–1967, North-Holland, Amsterdam, 1971, pp. 15–21.Google Scholar
Monk, J. D. [1986] The contributions of Alfred Tarski to algebraic logic, this Journal, vol. 51, pp. 899906.Google Scholar
Montague, R. and Kalish, D. [1956] A simplification of Tarski's formulation of the predicate calculus, Bulletin of the American Mathematical Society, vol. 62, p. 261.Google Scholar
Mostowski, A. [1937] Abzahlbäre Boolesche Körper und ihre Anwendung auf die allgemeine Metamathematik, Fundamenta Mathematicae, vol. 29, pp. 3453.CrossRefGoogle Scholar
Presburger, M. [1930] Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Comptes-rendus du I congrès des mathématiciens des pays slaves, Warszawa, 1929, Ksiażnica Atlas T.N.S.W. Warsaw, 1930, pp. 92-101, 395.Google Scholar
Reznikoff, I. [1965] Tout ensemble de formules de la logique classique est équivalent à un ensemble indépendant, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, vol. 260, pp. 23852388.Google Scholar
Robinson, A. [1951] On the metamathematics of algebra, North-Holland, Amsterdam.Google Scholar
Rosser, J. B. [1937] Godei theorems for non-constructive logics, this Journal, vol. 2, pp. 129137.Google Scholar
Sacerdote, G. S. [1973] Elementary properties of free groups, Transactions of the American Mathematical Society, vol. 178, pp. 127138.CrossRefGoogle Scholar
Scott, D. [1961] Measurable cardinals and constructible sets, Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 9, pp. 521524.Google Scholar
Scott, D. [1965] Logic with denumerably long formulas and finite strings of quantifiers, Proceedings of the 1963 Berkeley symposium on the theory of models (Addison, J.et al., editors), North-Holland, Amsterdam, pp. 327341.Google Scholar
Shelah, S. [1971] Every two elementarily equivalent models have isomorphic ultrapowers, Israel Journal of Mathematics, vol. 10, pp. 224233.CrossRefGoogle Scholar
Skolem, T. [1919] Untersuchungen über die Axiome des Klassenkalkuls und über Produktations- und Sum-mationsprobleme, welche gewisse Klassen von Aussagen betreffen, Skrifter utgit av Videnskapsselskapet i Kristiania. I, Matematisk-Naturvidenskabelig Klasse, no. 3.Google Scholar
Skolem, T. [1920] Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen, Skrifter utgit av Videnskapsselskapet i Kristiania. I, Matematisk-Naturvidenskabelig Klasse, no. 4.Google Scholar
Skolem, T. [1922] Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre, Wissenschaftliche Vorträge gehalten auf dem fünften Kongress der Skandinavischen Mathematiker in Helsingfors vom 4. bis 7. Juli 1922, Akademische Buchhandlung, Helsinki, 1923, pp. 217232.Google Scholar
Skolem, T. [1933] Über die Unmöglichkeit einer vollständigen Charakterisierung der Zahlenreihe mittels eines endlichen Axiomensystems, Norsk Matematisk Forenings Skrifter, ser. 2, no. 10, pp. 7382.Google Scholar
Skolem, T. [1934] Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fundamenta Mathematicae, vol. 23, pp. 150161.CrossRefGoogle Scholar
Stone, M. H. [1936] The theory of representations for Boolean algebras, Transactions of the American Mathematical Society, vol. 40, pp. 37111.Google Scholar
Stone, M. H. [1937] Applications of the theory of Boolean rings to general topology, Transactions of the American Mathematical Society, vol. 41, pp. 375481.CrossRefGoogle Scholar
Suppes, P. F. [1987] this Journal, vol. 52 (to appear).Google Scholar
Vaught, R. [1961] The elementary character of two notions from general algebra, Essays on the foundations of mathematics, dedicated to A. A. Fraenkel on his seventieth anniversary (Bar-Hillel, Y.et al., editors), Magnus Press, Jerusalem, pp. 226233.Google Scholar
Vaught, R. [1965] A Löwenheim-Skolem theorem for cardinals far apart, Proceedings of the 1963 Berkeley symposium on the theory of models (Addison, J.et al., editors), North-Holland, Amsterdam, pp. 390401.Google Scholar
Vaught, R. [1974] Model theory before 1945, Proceedings of the Tarski symposium, Proceedings of Symposia in Pure Mathematics, vol. 25, American Mathematical Society, Providence, Rhode Island, pp. 153172.CrossRefGoogle Scholar