Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T23:15:56.603Z Has data issue: false hasContentIssue false

An independence result in quadratic form theory: Infinitary combinatorics applied to ε-Hermitian spaces

Published online by Cambridge University Press:  12 March 2014

Fred Appenzeller*
Affiliation:
Équipe de Logique Mathématique, Université Paris, -VII, 75251 Paris, France

Abstract

There are shown to be many ε-Hermitian spaces, and an isometry criterion is stated which holds under MA1 and is false under 20< 21.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[App]Appenzeller, F., Methoden der unendlichen Kombinatorik angewendet auf ℵ1-dimensionale ℵ-hermitesche Räume, Ph.D. thesis, Universität Zürich, Zürich, 1985.Google Scholar
[Bàn]Bäni, W., Linear topologies and sesquilinear forms, Communications in Algebra, vol. 5 (1977), pp. 15611587.CrossRefGoogle Scholar
[D/S]Devlin, K. J. and Shelah, S., A weak version of ♢ which follows from 20 < 21, Israel Journal of Mathematics, vol. 29 (1978), pp. 239247.CrossRefGoogle Scholar
[Ek1]Eklof, P. C., Methods of logic in Abelian group theory, Abelian group theory (proceedings, Las Cruces, New Mexico, 1976), Lecture Notes in Mathematics, vol. 616, Springer-Verlag, Berlin, 1977, pp. 251269.Google Scholar
[Ek2]Eklof, P. C., Set-theoretic methods in homological algebra and Abelian groups, Séminaire de Mathématiques Supérieures, vol. 69, Presses de l'Université de Montréal, Montréal, 1980.Google Scholar
[Ek3]Eklof, P. C., The structure of mx-separable groups, Transactions of the American Mathematical Society, vol. 279 (1983), pp. 497523.Google Scholar
[Ek4]Eklof, P. C., unpublished handwritten notes, 1981.Google Scholar
[E/H]Eklof, P. C. and Huber, M., On ω-filtered vector spaces and their application to Abelian p-groups. I, II, Commentarii Mathematici Helvetici, vol. 60(1985), pp. 145171; Rocky Mountain Journal of Mathematics, vol. 18 (1988), pp. 123–136.CrossRefGoogle Scholar
[E/M]Eklof, P. C. and Mekler, A., On endomorphism rings of ω 1-separable primary groups, Abelian group theory (proceedings, Honolulu, Hawaii, 1983), Lecture Notes in Mathematics, vol. 1006, Springer-Verlag, Berlin, 1983, pp. 320339.CrossRefGoogle Scholar
[Gro]Gross, H., Quadratic forms in infinite dimensional vector spaces, Birkhäuser, Basel, 1979.Google Scholar
[Gr2]Gross, H., On the number of isometry classes of bilinear spaces in uncountable dimensions (to appear).Google Scholar
[G/K]Gross, H. and Keller, H. A., On the problem of classifying infinite chains in projective and orthogonal geometry, Annales Academiae Scientiarum Fennicae Series A I: Mathematica, vol. 8 (1983), pp. 6786.Google Scholar
[Hal]Hall, J. I., The number of trace-valued forms and extraspecial groups, Journal of the London Mathematical Society, ser. 2, vol. 37 (1988), pp. 113.CrossRefGoogle Scholar
[Hub]Huber, M., Methods of set theory and the abundance of separable Abelian p-groups, Abelian group theory (proceedings, Honolulu, Hawaii, 1983), Lecture Notes in Mathematics, vol. 1006, Springer-Verlag, Berlin, 1983, pp. 304319.CrossRefGoogle Scholar
[Kun]Kunen, K., Set theory. An introduction to independence proofs, North-Holland, Amsterdam, 1980.Google Scholar
[Mek]Mekler, A., C.c.c. forcing without combinatorics, this Journal, vol. 49 (1984), pp. 830832.Google Scholar
[Sh 1]Shelah, S., Infinite Abelian groups, Whitehead problem and some constructions, Israel Journal of Mathematics, vol. 18 (1974), pp. 243256.CrossRefGoogle Scholar
[Sh2]Shelah, S., Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1978.Google Scholar
[Sh3]Shelah, S., A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific Journal of Mathematics, vol. 41 (1972), pp. 247261.CrossRefGoogle Scholar