No CrossRef data available.
Published online by Cambridge University Press: 17 April 2014
We describe the Ziegler spectrum of a Bézout domain B=D+XQ[X] where D is a principal ideal domain and Q is its field of fractions; in particular we compute the Cantor–Bendixson rank of this space. Using this, we prove the decidability of the theory of B-modules when D is “sufficiently” recursive.