Published online by Cambridge University Press: 12 March 2014
In [8] S. J. Maslov gives a positive solution to the decision problem for satisfiability of formulas of the form
in any first-order predicate calculus without identity where h, k, m, n are positive integers, αi, βi are signed atomic formulas (atomic formulas or negations of atomic formulas), and ∧, ∨ are conjunction and disjunction symbols, respectively (cf. [6] for a related solvable class). In this paper we show that the decision problem is unsolvable for formulas that are like those considered by Maslov except that they have prefixes of the form ∀x∃y1 … ∃yk∀z. This settles the decision problems for all prefix classes of formulas for formulas that are in prenex conjunctive normal form in which all disjunctions are binary (have just two terms). In our concluding section we report results on decision problems for related classes of formulas including classes of formulas in languages with identity and we describe some special properties of formulas in which all disjunctions are binary including a property that implies that any proof of our result, that a class of formulas is a reduction class for satisfiability, is necessarily indirect. Our proof is based on an unsolvable combinatorial tag problem.