Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T19:28:26.212Z Has data issue: false hasContentIssue false

The deduction theorem for quantum logic—some negative results

Published online by Cambridge University Press:  12 March 2014

Jacek Malinowski*
Affiliation:
Section of Logic, Institute of Philosophy And Sociology, Polish Academy of Sciences, 90-365 Łódź, Poland

Abstract

We prove that no logic (i.e. consequence operation) determined by any class of orthomodular lattices admits the deduction theorem (Theorem 2.7). We extend those results to some broader class of logics determined by ortholattices (Corollary 2.6).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bammert, J. [1968], Quasideduktive Systeme und S-algebren. I, II, Archiv für Mathematische Logik und Grundlagenforschung, vol. 11, pp. 56-67, 101112.CrossRefGoogle Scholar
Czelakowski, J. [1985], Algebraic aspects of deduction theorems, Studia Logica, vol. 44, pp. 369387.CrossRefGoogle Scholar
Fraser, G. and Horn, A. [1970], Congruence relation in direct products, Proceedings of the American Mathematical Society, vol. 26, pp. 390394.CrossRefGoogle Scholar
Grätzer, G. [1980], Universal algebra, 2nd ed., Springer-Verlag, Berlin.Google Scholar
Chiara, M. L. Dalla [1981], Some metalogical pathologies of quantum logic, Current issues in quantum logic (Beltrametti, E. and van Fraassen, Bas, editors), Plenum Press, New York, pp. 147159.CrossRefGoogle Scholar
Kalmbach, G. [1974], Orthomodular logic, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 20, pp. 395406.CrossRefGoogle Scholar
Kalmbach, G. [1981], Omologie as a Hilbert type calculus, Current issues in quantum logic (Beltrametti, E. and van Fraassen, Bas, editors), Plenum Press, New York, pp. 333340.CrossRefGoogle Scholar
Kalmbach, G. [1983], Orthomodular lattices, Academic Press, London.Google Scholar
Kotas, J. [1967], An axiom system for modular logic, Studia Logica, vol. 21, pp. 1738.CrossRefGoogle Scholar
Rasiowa, H. [1974], An algebraic approach to non-classical logics, PWN, Warsaw, and North-Holland, Amsterdam.Google Scholar
Wójcicki, R. [1973], Matrix approach in sentential calculi, Studia Logica, vol. 32, pp. 737.CrossRefGoogle Scholar