Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T07:59:47.943Z Has data issue: false hasContentIssue false

Defining relevant implication in a propositionally quantified S4

Published online by Cambridge University Press:  12 March 2014

Philip Kremer*
Affiliation:
Department of Philosophy, Yale University, P.O. Box 208306, New Haven Ct 06520-8306, USA, E-mail: kremer@minerva.cis.yale.edu

Abstract

R. K. Meyer once gave precise form to the question of whether relevant implication can be defined in any modal system, and his answer was ‘no’. In the present paper, we extend S4, first with propositional quantifiers, to the system S4π+; and then with definite propositional descriptions, to the system S4π+ip. We show that relevant implication can in some sense be defined in the modal system S4π+ip, although it cannot be defined in S4π+.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Anderson, A. R. and Belnap, N. D. Jr., Entailment: the logic of relevance and necessity, vol. 1, Princeton University Press, Princeton, 1975.Google Scholar
[2]Bull, R. A., On modal logic with prepositional quantifiers, this Journal, vol. 34 (1969), pp. 257263.Google Scholar
[3]Carnap, R., Meaning and necessity, University of Chicago Press, Chicago, 1947.Google Scholar
[4]Fine, K., Prepositional quantifiers in modal logic, Theoria, vol. 36 (1970), pp. 336346.CrossRefGoogle Scholar
[5]Frege, G., Über sinn und bedeutung, Zeitschrift für Philosophie und Kritik, vol. 100 (1892), pp. 2550, English translation, On sense and reference, (M. Black, translator), Translations from the philosophical writings of Gottlob Frege, (P. Geach and M. Black, editors), Basil Blackwell, Oxford, 2nd edition, 1960, pp. 56–79.Google Scholar
[6]Henkin, L., Completeness in the theory of types, this Journal, vol. 15 (1950), pp. 8191.Google Scholar
[7]Hilbert, D. and Bernays, P., Grundlagen der Mathematik I, Springer-Verlag, Berlin, 1934.Google Scholar
[8]Hughes, G. E. and Cresswell, M. J., An introduction to modal logic, Methuen and Co. Ltd., London, 1968.Google Scholar
[9]Hughes, G. E., A companion to modal logic, Methuen and Co. Ltd., London, 1984.Google Scholar
[10]Kaminski, M. and Tiomkin, M., The expressive power of second-order prepositional modal logic, Notre Dame Journal of Formal Logic, vol. 37 (1996), pp. 3543.CrossRefGoogle Scholar
[11]Kaplan, D., S5 with quantifiablepropositional variables, this Journal, vol. 35 (1970), p. 355.Google Scholar
[12]Kremer, P., On the complexity of propositional quantification in intuitionistic logic, forthcoming in this Journal.Google Scholar
[13]Kremer, P., Prepositional quantification in the topological semantics for S4, manuscript.Google Scholar
[14]Kremer, P., Quantifying ever propositions in relevance logic: non-axiomatisability of ∀p and ∃p, this Journal, vol. 58 (1993), pp. 334349.Google Scholar
[15]Kripke, S., Semantical analysis of modal logic I, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 9 (1963), pp. 6796.CrossRefGoogle Scholar
[16]Lewis, C. I. and Langford, C. H., Symbolic logic, Dover Publications, New York, 1932.Google Scholar
[17]Meyer, R. K., Relevance is not reducible to modality, in Anderson, and Belnap, [1975], pp. 462471, 1975.Google Scholar
[18]Routley, R. and Meyer, R. K., The semantics of entailment I, Truth, syntax and modality: proceedings of the Temple University conference on alternative semantics (Leblanc, H., editor), North-Holland, Amsterdam, 1973, pp. 199243.CrossRefGoogle Scholar
[19]Russell, B., On denoting, Mind, vol. 14 (1905), pp. 479493.CrossRefGoogle Scholar
[20]Russell, B., Introduction to mathematical philosophy, London, 1919.Google Scholar
[21]Urquhart, A., Semantics for relevant logics, this Journal, vol. 37 (1972), pp. 159169.Google Scholar